Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Dev Ind Pharm ; 49(7): 439-447, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37310383

RESUMEN

OBJECTIVE: To develop N-(levodopa) chitosan derivatives through click chemistry to study their effect in brain cells.Significance: This study presents a proof-of-concept that macromolecules such as N-(Levodopa) chitosan derivatives traverse brain cell membranes and induce biomedical functionalities. METHODS: Through click chemistry, we developed N-(levodopa) chitosan derivatives. They were physically and chemically characterized by FT-IR, 1H-NMR, TGA and Dynamic Light Scattering analyses. Solution and nanoparticles of N-(levodopa) chitosan derivatives were tested in primary cell cultures from the postnatal rat olfactory bulb, substantia nigra and corpus callosum. Ca2+ imaging and UPLC experiments were used to investigate if the biomaterial modulated the brain cell physiology. RESULTS: N-(levodopa) chitosan derivatives induced intracellular Ca2+ responses in primary cell cultures of the rat brain. UPLC experiments indicated that levodopa attached to chitosan was converted into dopamine by brain cells. CONCLUSION: The present study shows that N-(levodopa) chitosan may be useful to develop new treatment strategies, which could serve as molecular reservoirs of biomedical drugs to treat degenerative disorders of the nervous system.


Asunto(s)
Quitosano , Levodopa , Ratas , Animales , Levodopa/farmacología , Quitosano/química , Química Clic/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Encéfalo
2.
Cell Biochem Funct ; 39(5): 688-698, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33821520

RESUMEN

The meninges shield the nervous system from diverse, rather harmful stimuli and pathogens from the periphery. This tissue is composed of brain endothelial cells (BECs) that express diverse ion channels and chemical-transmitter receptors also expressed by neurons and glial cells to communicate with each other. However, information about the effects of ATP and angiotensin II on BECs is scarce, despite their essential roles in blood physiology. This work investigated in vitro if BECs from the meninges from rat forebrain respond to ATP, angiotensin II and high extracellular potassium, with intracellular calcium mobilizations and its second messenger-associated pathways. We found that in primary BEC cultures, both ATP and angiotensin II produced intracellular calcium responses linked to the activation of inositol trisphosphate receptors and ryanodine receptors, which led to calcium release from intracellular stores. We also used RT-PCR to explore what potassium channel subunits are expressed by primary BEC cultures and freshly isolated meningeal tissue, and which might be linked to the observed effects. We found that BECs mainly expressed the inward rectifier potassium channel subunits Kir1.1, Kir3.3, Kir 4.1 and Kir6.2. This study contributes to the understanding of the functions elicited by ATP and angiotensin II in BECs from rat meninges. SIGNIFICANCE OF THE STUDY: Brain endothelial cells (BECs) express diverse ion channels and membrane receptors, which they might use to communicate with neurons and glia. This work investigated in vitro, if BECs from the rat forebrain respond to angiotensin II and ATP with intracellular calcium mobilizations. We found that these cells did respond to said substances with intracellular calcium mobilizations linked to inositol trisphosphate and ryanodine receptor activation, which led to calcium release from intracellular stores. These findings are important because they might uncover routes of active communication between brain cells and endothelial cells.


Asunto(s)
Adenosina Trifosfato/farmacología , Angiotensina II/farmacología , Calcio/metabolismo , Células Endoteliales/efectos de los fármacos , Potasio/farmacología , Prosencéfalo/metabolismo , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Masculino , Canales de Potasio/genética , Canales de Potasio/metabolismo , Prosencéfalo/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA