RESUMEN
Soil and water characteristics in micro basins with different land uses/land cover (LULC) can influence riparian vegetation diversity, stream water quality, and benthic diatom diversity. We analyzed 18 streams in the upper part of the La Antigua River basin, México, surrounded by cloud forests, livestock pastures, and coffee plantations. Concentrations of P, C, and N were elevated in the humus of forested streams compared to other land uses. In contrast, cations, ammonium, and total suspended solids (TSS) of water streams were higher in pastures and coffee plantations. These results indicate that LULC affects stream chemistry differently across land uses. Vegetation richness was highest (86-133 spp.) in forest streams and lowest in pastures (46-102), whereas pasture streams had the greatest richness of diatoms (9-24), likely due to higher light and temperatures. Some soil and water characteristics correlated with both true diversity and taxonomic diversity; soil carbon exchange capacity (CEC) correlated with vegetation diversity (r = 0.60), while water temperature correlated negatively (r = - 0.68). Diatom diversity was related to soil aluminum (r = - 0.59), magnesium (r = 0.57), water phosphorus (r = 0.88), and chlorophyll (r = 0.75). These findings suggest that land use affects riparian vegetation, while physical and chemical changes influence diatom diversity in stream water and soil. The lack of correlation between vegetation and diatom diversity indicates that one cannot predict the other. This research is an essential first step in understanding how land use changes impact vegetation and diatom diversity in mountain landscapes, providing valuable insights for environmental monitoring and conservation efforts in tropical cloud forests.
Asunto(s)
Biodiversidad , Diatomeas , Monitoreo del Ambiente , Bosques , Suelo , México , Suelo/química , Ríos/química , Plantas , Fósforo/análisisRESUMEN
Florivores consume floral structures with negative effects on plant fitness and pollinator attraction. Several studies have evaluated these consequences in hermaphroditic plants, but little is known about the effects on monoecious and dioecious species. We characterize the florivory and its effects on floral visitors and reproductive success in a monoecious population of Sagittaria lancifolia. Five categories of florivory were established according to the petal area consumed. Visits were recorded in male and female flowers within the different damage categories. Reproductive success was evaluated through fruit number and weight, as well as the number of seeds per fruit. Our results show that the weevil Tanysphyrus lemnae is the main florivore, and it mainly damages the female flowers. Hymenoptera were recorded as the most frequent visitors of both male and female flowers. Male and female flowers showed differences in visit frequency, which decreases as flower damage increases. Reproductive success was negatively related to the level of damage. We found that florivory is common in the population of S. lancifolia, which can exert a strong selective pressure by making the flowers less attractive and reducing the number of seeds per fruit. Future studies are needed to know how florivores affect plant male fitness.
RESUMEN
The expansion of alien invasive species is a worldwide threat that affects most ecosystems. Islands and freshwater ecosystems are among the most vulnerable to species invasion, resulting in reduced biodiversity. In this study, we aimed to explore the floristic composition of the aquatic vegetation in four lagoons in southeastern Cozumel and assess the occurrence and abundance of alien and potentially invasive plants. We found a total of 43 aquatic or underwater herbaceous species that are subject to periodic flooding. Cluster analyses grouped the lagoons into two groups according to their floristic composition. The results demonstrate that alien and potentially invasive plants were dominant in 3 of the 4 lagoons, representing from 7 to 43% of the species. Six of these species were notably abundant, especially in three lagoons. Further, 2 species are considered among the 100 worst invasive species worldwide, although their abundance in Mexico remains relatively reduced. Five alien and potentially invasive species are terrestrial and grow on the shore of the lagoons, while one is aquatic. Urgent control and management actions are necessary. These should include (a) early detection and surveillance to determine if the alien species found behave as invasives; (b) understanding the relevance of invasive species; (c) preventing and intercepting; and (d) control and management. Habitat restoration, adequate legislation, collaboration between stakeholders, and raising awareness of the dangers of releasing or cultivating invasive species in the wild are also necessary.
RESUMEN
Buzz-pollinated plants are an essential source of pollen for a significant portion of local bee communities. Buzz pollination research has focused on studying the properties of bee buzzes and their implications on pollen release, morphological specialization of flowers, and the reproductive ecology of buzz-pollinated plants. In contrast, diversity patterns and ecological interactions between bees and buzz-pollinated plants have been studied less. This study analyzed the buzzing bee community of twelve tropical buzz-pollinated co-occurring plant species in a tropical montane cloud forest during the flowering periods of two consecutive years, focusing on diversity, compositional similarity, structure, and specialization (H2´) of the network. Twenty-one bee species belonging to Apidae, Colletidae, and Halictidae were recorded, fifteen species in 2014, and eighteen in 2015. Floral display and visited flowers doubled from first to second year, although the flowering period was 2 months longer in the first year. Bee compositional similarity between plants tended to be low; however, this was due rather to a high nestedness than species replacement. Temporal bee compositional similarity was also low but variable, and different plant species showed the highest similarity between years. The number of bee visits depended significantly on the number of flowers and years. Interactions between bees and plants showed a tendency to generalization. Compared to other buzz-pollinated networks, specialization (H2´) was similar, but diversity was low and the network small. In endangered ecosystems like the Mexican cloud forest, however, buzzing bees support biodiversity and provide an essential ecological service by pollinating dominant understory flora.
Asunto(s)
Abejas , Bosques , Polinización , Animales , Biodiversidad , Flores , México , PolenRESUMEN
Ant-gardens (AGs) are considered one of the most complex mutualist systems between ants and plants, since interactions involving dispersal, protection, and nutrition occur simultaneously in them; however, little is known about the effects of the transformation of ecosystems on their diversity and interactions. In five environments with different land use within an anthropic landscape in southeastern Mexico, we investigated the diversity and composition of epiphytes and host trees of AGs built by Azteca gnava. A total of 10,871 individuals of 26 epiphytic species, associating with 859 AGs located in 161 host trees, were recorded. The diversity and composition of epiphytes tended to be different between environments; however, Aechmea tillandsioides and Codonanthe uleana were the most important species and considered true AG epiphytes, because they were the most frequent, abundant, and occurred exclusively in AGs. Other important species were the orchids Epidendrum flexuosum, Coryanthes picturata, and Epidendrum pachyrachis, and should also be considered true AG epiphytes, because they occurred almost exclusively in the AGs. The AG abundance in agroforestry plantations was similar or even greater than in riparian vegetation (natural habitat). The AGs were registered in 37 host species but were more frequent in Mangifera indica and Citrus sinensis. We conclude that true epiphytes of A. gnava AGs persist in different environments and host trees, and even these AGs could proliferate in agroforestry plantations of anthropic landscapes.
Asunto(s)
Hormigas , Ambiente , Fenómenos Fisiológicos de las Plantas , Simbiosis , Árboles , Animales , Biodiversidad , MéxicoRESUMEN
Flowering plant density can increase number of visits and fruit set in multi-flowering plants, however this aspect has not been studied on few flower species. We studied the effects of individual floral display and plant density on the fruit production of the epiphytic, moth-pollinated orchid, Ryncholaelia glauca, in an oak forest of Chavarrillo, Veracruz, Mexico. Species is non-autogamous, and produced one flower per flowering shoot each flowering season. We hypothesized that orchids with more flowering shoots and those on trees with clumps of conspecific should develop more fruits than isolated ones. R. glauca population flowers synchronouly, and individual flowers last up to 18 days, with flowers closing rapidly after pollination. Individuals produced few flowers per year, although some plants developed flowers in both seasons and fewer of them developed fruits both years. There was no relationship between flower number per orchid, or per host tree, with the number of fruits developed per plant. Host trees with flowering and fruiting orchids were randomly dispersed and the pattern of distribution of flowering and fruiting plants was not related. Apparently, pollinators visit the flowers randomly, with no evidence of density dependence. The fruit set of R. glauca was as low as fruit set of multi-flowered orchids moth pollinated, suggesting that fruit set on moth pollinated orchids could be independent of the number of flowers displayed.
Asunto(s)
Flores , Frutas , Orchidaceae , Frutas , México , Polen , Densidad de PoblaciónRESUMEN
Flowering plant density can increase number of visits and fruit set in multi-flowering plants, however this aspect has not been studied on few flower species. We studied the effects of individual floral display and plant density on the fruit production of the epiphytic, moth-pollinated orchid, Ryncholaelia glauca, in an oak forest of Chavarrillo, Veracruz, Mexico. Species is non-autogamous, and produced one flower per flowering shoot each flowering season. We hypothesized that orchids with more flowering shoots and those on trees with clumps of conspecific should develop more fruits than isolated ones. R. glauca population flowers synchronouly, and individual flowers last up to 18 days, with flowers closing rapidly after pollination. Individuals produced few flowers per year, although some plants developed flowers in both seasons and fewer of them developed fruits both years. There was no relationship between flower number per orchid, or per host tree, with the number of fruits developed per plant. Host trees with flowering and fruiting orchids were randomly dispersed and the pattern of distribution of flowering and fruiting plants was not related. Apparently, pollinators visit the flowers randomly, with no evidence of density dependence. The fruit set of R. glauca was as low as fruit set of multi-flowered orchids moth pollinated, suggesting that fruit set on moth pollinated orchids could be independent of the number of flowers displayed.