Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 13(16): 1976-1985, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33913951

RESUMEN

This work aims to advance towards a more affordable laboratory procedure for sample treatment to determine carbonyl compounds by derivatization with 2,4-dinitrophenylhydrazine (DNPH). The proposal is based on reducing the amount of DNPH and solvents. A simple addition of standard carbonyls in a solution containing DNPH to prepare hydrazone standards is described and evaluated. Tedious recrystallization steps are avoided. Formaldehyde, acetaldehyde, acetone, tolualdehyde and hexanal, as carbonyl models, were quantified using a DNPH concentration of 400 µg mL-1 and 3.8 mM H2SO4 and by keeping for 24 hours at room temperature. Analytical coefficients of variation between 10 and 25% were found from the analysis of blanks under intermediate conditions (two different devices, very different concentrations of DNPH and analysis on two days). From these values of relative standard deviations and background levels, quantification limits were estimated between 15 and 40 ng mL-1. The reduction of reagent amounts allows the operator to better control the background levels in the use of DNPH, as well as making the method more cost-effective and easy to use. In short, it leads to a more sustainable adaptation of the classical method. The versatility in analytical application was tested to estimate the levels of formaldehyde, acetaldehyde and acetone in very different types of environmental samples. In particular, outdoor and indoor samples were collected in filters and impregnated cartridges, respectively. Moreover, tars in 2-propanol and particulate matter from gasification processes were also tested.

2.
Chemosphere ; 248: 125896, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32006840

RESUMEN

Biomass burning is a major air pollution problem all around the world. However, the identification and quantification of its contribution to ambient aerosol levels is a difficult task due to the generalized lack of observations of molecular markers. This paper presents the results of a yearlong study of organic constituents of the atmospheric aerosol at a rural site in southern Spain (Villanueva del Arzobispo, Jaén). Sampling was performed for PM10 and PM2.5, and a total of 116 and 115 samples, respectively, were collected and analyzed by GC/MS, quantifying 77 organic compounds. Higher levels of organic pollutants were recorded from November to March, coinciding with the cold season when domestic combustion is a common practice in rural areas. This jointly with adverse meteorological conditions, e.g. strong atmospheric stability, produced severe pollution episodes with high PMx ambient levels. High daily concentrations of tracers were reached, up to 26 ng m-3 for B(a)P and 6065 ng m-3 for levoglucosan in PM2.5, supporting that biomass burning is a major source of pollution at rural areas. A multivariate statistical study based on factor and cluster analysis, was applied to the data set with the aim to distinguish sources of organic compounds. The main resulting sources were related with biomass combustion, secondary organic aerosol (SOA), biogenic emissions, lubricating oil and soil organic components. A preliminary organic source profile for olive wastes burning was evaluated, based on cluster results, showing anhydrosacharides and xylitol are the main emitted compounds, accounting for more than 85% of the quantified compounds. Other source compounds were fatty acids, diacids, aliphatics, sugars, sugar alcohols, PAHs and quinones.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Incineración , Olea , Contaminación del Aire/análisis , Biomasa , Monitoreo del Ambiente , Compuestos Orgánicos/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año , Suelo , España
3.
Crit Rev Anal Chem ; 50(1): 29-49, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30925844

RESUMEN

This overview is focused to provide an useful guide of the families of organic pollutants that can be determined by liquid chromatography operating in reverse phase and ultraviolet/fluorescence detection. Eight families have been classified as the main groups to be considered: carbonyls, carboxyls, aromatics, phenols, phthalates, isocyanates, pesticides and emerging. The references have been selected based on analytical methods used in the environmental field, including both the well-established procedures and those more recently developed.


Asunto(s)
Cromatografía Liquida/métodos , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/análisis , Fraccionamiento Químico/métodos , Monitoreo del Ambiente/métodos , Espectrometría de Fluorescencia/métodos , Espectrofotometría Ultravioleta/métodos
4.
J Anal Methods Chem ; 2017: 9796457, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209555

RESUMEN

This study aims at providing recommendations concerning the validation of analytical protocols by using routine samples. It is intended to provide a case-study on how to validate the analytical methods in different environmental matrices. In order to analyze the selected compounds (pesticides and polychlorinated biphenyls) in two different environmental matrices, the current work has performed and validated two analytical procedures by GC-MS. A description is given of the validation of the two protocols by the analysis of more than 30 samples of water and sediments collected along nine months. The present work also scopes the uncertainty associated with both analytical protocols. In detail, uncertainty of water sample was performed through a conventional approach. However, for the sediments matrices, the estimation of proportional/constant bias is also included due to its inhomogeneity. Results for the sediment matrix are reliable, showing a range 25-35% of analytical variability associated with intermediate conditions. The analytical methodology for the water matrix determines the selected compounds with acceptable recoveries and the combined uncertainty ranges between 20 and 30%. Analyzing routine samples is rarely applied to assess trueness of novel analytical methods and up to now this methodology was not focused on organochlorine compounds in environmental matrices.

5.
Talanta ; 101: 428-34, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23158344

RESUMEN

This paper presents an evaluation of uncertainty associated to analytical measurement of 18 polycyclic aromatic compounds (PACs) in ambient air by liquid chromatography with fluorescence detection (HPLC/FD). The study was focused on analyses of PM(10), PM(2.5) and gas phase fractions. Main analytical uncertainty was estimated for 11 polycyclic aromatic hydrocarbons (PAHs), four nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and two hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) based on the analytical determination, reference material analysis and extraction step. Main contributions reached 15-30% and came from extraction process of real ambient samples, being those for nitro-PAHs the highest (20-30%). Range and mean concentration of selected PACs measured in gas phase and PM(10)/PM(2.5) particle fractions during a full year are also presented. Concentrations of OH-PAHs were about 2-4 orders of magnitude lower than their parent PAHs and comparable to those sparsely reported in literature.


Asunto(s)
Contaminantes Atmosféricos/análisis , Compuestos Policíclicos/análisis , Incertidumbre , Cromatografía Líquida de Alta Presión , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA