Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 38(2): 355-64, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14675647

RESUMEN

The toxic and carcinogenic properties of inorganic and organic arsenic species make their determination in natural water vitally important. Determination of individual inorganic and organic arsenic species is critical because the toxicology, mobility, and adsorptivity vary substantially. Several methods for the speciation of arsenic in groundwater, surface-water, and acid mine drainage sample matrices using field and laboratory techniques are presented. The methods provide quantitative determination of arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA), dimethylarsinate (DMA), and roxarsone in 2-8 min at detection limits of less than 1 microg arsenic per liter (microg As L(-1)). All the methods use anion exchange chromatography to separate the arsenic species and inductively coupled plasma-mass spectrometry as an arsenic-specific detector. Different methods were needed because some sample matrices did not have all arsenic species present or were incompatible with particular high-performance liquid chromatography (HPLC) mobile phases. The bias and variability of the methods were evaluated using total arsenic, As(III), As(V), DMA, and MMA results from more than 100 surface-water, groundwater, and acid mine drainage samples, and reference materials. Concentrations in test samples were as much as 13,000 microg As L(-1) for As(III) and 3700 microg As L(-1) for As(V). Methylated arsenic species were less than 100 microg As L(-1) and were found only in certain surface-water samples, and roxarsone was not detected in any of the water samples tested. The distribution of inorganic arsenic species in the test samples ranged from 0% to 90% As(III). Laboratory-speciation method variability for As(III), As(V), MMA, and DMA in reagent water at 0.5 microg As L(-1) was 8-13% (n=7). Field-speciation method variability for As(III) and As(V) at 1 microg As L(-1) in reagent water was 3-4% (n=3).


Asunto(s)
Arsénico/análisis , Arsénico/química , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Contaminantes del Agua/análisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Agua/química
2.
Environ Sci Technol ; 37(8): 1509-14, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12731831

RESUMEN

Roxarsone, 3-nitro-4-hydroxyphenylarsonic acid, is an organoarsenic compound that is used extensively in the feed of broiler poultry to control coccidial intestinal parasites, improve feed efficiency, and promote rapid growth. Nearly all the roxarsone in the feed is excreted unchanged in the manure. Poultry litter composed of the manure and bedding material has a high nutrient content and is used routinely as a fertilizer on cropland and pasture. Investigations were conducted to determine the fate of poultry-litter roxarsone in the environment Experiments indicated that roxarsone was stable in fresh dried litter; the primary arsenic species extracted with water from dried litter was roxarsone. However, when water was added to litter at about 50 wt % and the mixture was allowed to compost at 40 degrees C, the speciation of arsenic shifted from roxarsone to primarily arsenate in about 30 days. Increasing the amount of water increased the rate of degradation. Experiments also suggested that the degradation process most likely was biotic in nature. The rate of degradation was directly proportional to the incubation temperature; heat sterilization eliminated the degradation. Biotic degradation also was supported by results from enterobacteriaceae growth media that were inoculated with litter slurry to enhance the biotic processes and to reduce the concomitant abiotic effects from the complex litter solution. Samples collected from a variety of litter windrows in Arkansas, Oklahoma, and Maryland also showed that roxarsone originally present had been converted to arsenate.


Asunto(s)
Antibacterianos/metabolismo , Estiércol , Eliminación de Residuos , Roxarsona/metabolismo , Alimentación Animal , Crianza de Animales Domésticos , Animales , Antibacterianos/análisis , Biodegradación Ambiental , Monitoreo del Ambiente , Fertilizantes , Aves de Corral , Roxarsona/análisis
3.
Environ Sci Technol ; 37(8): 1515-20, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12731832

RESUMEN

Poultry litter often contains arsenic as a result of organo-arsenical feed additives. When the poultry litter is applied to agricultural fields, the arsenic is released to the environment and may result in increased arsenic in surface and groundwater and increased uptake by plants. The release of arsenic from poultry litter, litter-amended soils, and soils without litter amendment was examined by extraction with water and strong acids (HCI and HNO3). The extracts were analyzed for As, C, P, Cu, Zn, and Fe. Copper, zinc, and iron are also poultry feed additives. Soils with a known history of litter application and controlled application rate of arsenic-containing poultry litter were obtained from the University of Maryland Agricultural Experiment Station. Soils from fields with long-term application of poultry litter were obtained from a tilled field on the Delmarva Peninsula (MD) and an untilled Oklahoma pasture. Samples from an adjacent forest or nearby pasture that had no history of litter application were used as controls. Depth profiles were sampled for the Oklahoma pasture soils. Analysis of the poultry litter showed that 75% of the arsenic was readily soluble in water. Extraction of soils shows that weakly bound arsenic mobilized by water correlates positively with C, P, Cu, and Zn in amended fields and appears to come primarily from the litter. Strongly bound arsenic correlates positively with Fe in amended fields and suggests sorption or coprecipitation of As and Fe in the soil column.


Asunto(s)
Antibacterianos/química , Arsénico/química , Estiércol , Aves de Corral , Roxarsona/química , Contaminantes del Suelo/análisis , Absorción , Alimentación Animal , Animales , Antibacterianos/análisis , Arsénico/análisis , Precipitación Química , Monitoreo del Ambiente , Hierro/química , Metales Pesados/análisis , Metales Pesados/química , Roxarsona/análisis , Solubilidad
4.
Sci Total Environ ; 302(1-3): 237-45, 2003 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-12526912

RESUMEN

Arsenic compounds have been used extensively in agriculture in the US for applications ranging from cotton herbicides to animal feed supplements. Roxarsone (3-nitro-4-hydroxyphenylarsonic acid), in particular, is used widely in poultry production to control coccidial intestinal parasites. It is excreted unchanged in the manure and introduced into the environment when litter is applied to farmland as fertilizer. Although the toxicity of roxarsone is less than that of inorganic arsenic, roxarsone can degrade, biotically and abiotically, to produce more toxic inorganic forms of arsenic, such as arsenite and arsenate. Experiments were conducted on aqueous litter leachates to test the stability of roxarsone under different conditions. Laboratory experiments have shown that arsenite can be cleaved photolytically from the roxarsone moiety at pH 4-8 and that the degradation rate increases with increasing pH. Furthermore, the rate of photodegradation increases with nitrate and natural organic matter concentration, reactants that are commonly found in poultry-litter-water leachates. Additional photochemical reactions rapidly oxidize the cleaved arsenite to arsenate. The formation of arsenate is not entirely undesirable, because it is less mobile in soil systems and less toxic than arsenite. A possible mechanism for the degradation of roxarsone in poultry litter leachates is proposed. The results suggest that poultry litter storage and field application practices could affect the degradation of roxarsone and subsequent mobilization of inorganic arsenic species.


Asunto(s)
Arsénico/química , Coccidiostáticos/química , Estiércol , Roxarsona/química , Contaminantes del Suelo/análisis , Animales , Arsénico/análisis , Conservación de los Recursos Naturales , Fertilizantes , Concentración de Iones de Hidrógeno , Fotoquímica , Aves de Corral
5.
Talanta ; 59(6): 1219-26, 2003 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18969012

RESUMEN

The compound 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) reacts with smectite to form a soluble azobenzene arsonic acid compound. This reaction is of particular interest because it provides a possible mechanism for the formation of a new type of arsenic compound in natural water systems. 3-Amino-HPAA is a degradation product excreted by chickens that are fed rations amended with roxarsone. Roxarsone is used to control coccidial intestinal parasites in most of the broiler chickens grown in the United States. The structure of the azobenzene arsonic acid compound was first inferred from negative-ion and positive-ion low-resolution mass-spectrometric analyses of the supernatant of the smectite suspension. Elemental composition of the parent ion determined by high-resolution positive-ion mass spectrometric measurements was consistent with the proposed structure of the azobenzene arsonic acid compound.

6.
J Agric Food Chem ; 50(25): 7340-4, 2002 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-12452655

RESUMEN

Arsenicals have been used extensively in agriculture in the United States as insecticides and herbicides. Mono- and disodium methylarsonate and dimethylarsinic acid are organoarsenicals used to control weeds in cotton fields and as defoliation agents applied prior to cotton harvesting. Because the toxicity of most organoarsenicals is less than that of inorganic arsenic species, the introduction of these compounds into the environment might seem benign. However, biotic and abiotic degradation reactions can produce more problematic inorganic forms of arsenic, such as arsenite [As(III)] and arsenate [As(V)]. This study investigates the occurrences of these compounds in samples of soil and associated surface and groundwaters. Preliminary results show that surface water samples from cotton-producing areas have elevated concentrations of methylarsenic species (>10 microg of As/L) compared to background areas (<1 microg of As/L). Species transformations also occur between surface waters and adjacent soils and groundwaters, which also contain elevated arsenic. The data indicate that point sources of arsenic related to agriculture might be responsible for increased arsenic concentrations in local irrigation wells, although the elevated concentrations did not exceed the new (2002) arsenic maximum contaminant level of 10 microg/L in any of the wells sampled thus far.


Asunto(s)
Agricultura , Arsenicales/análisis , Gossypium , Suelo/análisis , Agua/análisis , Arkansas , Herbicidas/análisis , Insecticidas/análisis , Mississippi
7.
Environ Sci Technol ; 36(10): 2213-8, 2002 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12038832

RESUMEN

The distribution of inorganic arsenic species must be preserved in the field to eliminate changes caused by metal oxyhydroxide precipitation, photochemical oxidation, and redox reactions. Arsenic species sorb to iron and manganese oxyhydroxide precipitates, and arsenite can be oxidized to arsenate by photolytically produced free radicals in many sample matrices. Several preservatives were evaluated to minimize metal oxyhydroxide precipitation, such as inorganic acids and ethylenediaminetetraacetic acid (EDTA). EDTA was found to work best for all sample matrices tested. Storing samples in opaque polyethylene bottles eliminated the effects of photochemical reactions. The preservation technique was tested on 71 groundwater and six acid mine drainage samples. Concentrations in groundwater samples reached 720 microg-As/L for arsenite and 1080 microg-As/L for arsenate, and acid mine drainage samples reached 13 000 microg-As/L for arsenite and 3700 microg-As/L for arsenate. The arsenic species distribution in the samples ranged from 0 to 90% arsenite. The stability of the preservation technique was established by comparing laboratory arsenic speciation results for samples preserved in the field to results for subsamples speciated onsite. Statistical analyses indicated that the difference between arsenite and arsenate concentrations for samples preserved with EDTA in opaque bottles and field speciation results were analytically insignificant. The percentage change in arsenite:arsenate ratios for a preserved acid mine drainage sample and groundwater sample during a 3-month period was -5 and +3%, respectively.


Asunto(s)
Arsénico/análisis , Minería , Contaminantes del Agua/análisis , Adsorción , Precipitación Química , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Fotoquímica , Contaminantes del Suelo/análisis , Manejo de Especímenes
8.
Anal Chem ; 64(18): 2036-41, 1992 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19518039

RESUMEN

An inductively coupled plasma-mass spectrometer was used for the quantitative measurement of trace elements In specific,submicrometer size-fraction particulates, separated by sedimentation field-flow fractionation. Fractions were collected from the eluent of the field-flow fractionation centrifuge and nebulized, with a Babington-type pneumatic nebulizer, into an argon inductively coupled plasma-mass spectrometer. Measured Ion currents were used to quantify the major, minor, and trace element composition of the size-separated colloidal (< 1-microm diameter) particulates. The composition of surface-water suspended matter collected from the Yarra and Darling rivers in Australia is presented to illustrate the usefulness of this tool for characterizing environmental materials. An adsorption experiment was performed using cadmium lon to demonstrate the utility for studying the processes of trace metal-suspended sediment interactions and contaminant transport in natural aquatic systems.

9.
Anal Chem ; 55(5): 102R-33R, 1983 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19527061
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA