Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2602, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545632

RESUMEN

XX female and XY male therian mammals equalize X-linked gene expression through the mitotically-stable transcriptional inactivation of one of the two X chromosomes in female somatic cells. Here, we describe an essential function of the X-linked homolog of an ancestral X-Y gene pair, Kdm5c-Kdm5d, in the expression of Xist lncRNA, which is required for stable X-inactivation. Ablation of Kdm5c function in females results in a significant reduction in Xist RNA expression. Kdm5c encodes a demethylase that enhances Xist expression by converting histone H3K4me2/3 modifications into H3K4me1. Ectopic expression of mouse and human KDM5C, but not the Y-linked homolog KDM5D, induces Xist in male mouse embryonic stem cells (mESCs). Similarly, marsupial (opossum) Kdm5c but not Kdm5d also upregulates Xist in male mESCs, despite marsupials lacking Xist, suggesting that the KDM5C function that activates Xist in eutherians is strongly conserved and predates the divergence of eutherian and metatherian mammals. In support, prototherian (platypus) Kdm5c also induces Xist in male mESCs. Together, our data suggest that eutherian mammals co-opted the ancestral demethylase KDM5C during sex chromosome evolution to upregulate Xist for the female-specific induction of X-inactivation.


Asunto(s)
Marsupiales , Ornitorrinco , ARN Largo no Codificante , Animales , Femenino , Genes Ligados a X , Histona Demetilasas , Masculino , Mamíferos/genética , Marsupiales/genética , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo , Inactivación del Cromosoma X/genética
2.
Genome Res ; 31(2): 186-197, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33414108

RESUMEN

Transcriptional enhancers enable exquisite spatiotemporal control of gene expression in metazoans. Enrichment of monomethylation of histone H3 lysine 4 (H3K4me1) is a major chromatin signature of transcriptional enhancers. Lysine (K)-specific demethylase 1A (KDM1A, also known as LSD1), an H3K4me2/me1 demethylase, inactivates stem-cell enhancers during the differentiation of mouse embryonic stem cells (mESCs). However, its role in undifferentiated mESCs remains obscure. Here, we show that KDM1A actively maintains the optimal enhancer status in both undifferentiated and lineage-committed cells. KDM1A occupies a majority of enhancers in undifferentiated mESCs. KDM1A levels at enhancers exhibit clear positive correlations with its substrate H3K4me2, H3K27ac, and transcription at enhancers. In Kdm1a-deficient mESCs, a large fraction of these enhancers gains additional H3K4 methylation, which is accompanied by increases in H3K27 acetylation and increased expression of both enhancer RNAs (eRNAs) and target genes. In postmitotic neurons, loss of KDM1A leads to premature activation of neuronal activity-dependent enhancers and genes. Taken together, these results suggest that KDM1A is a versatile regulator of enhancers and acts as a rheostat to maintain optimal enhancer activity by counterbalancing H3K4 methylation at enhancers.

3.
Cell Rep ; 32(6): 108002, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783930

RESUMEN

Long-lasting forms of synaptic plasticity such as synaptic scaling are critically dependent on transcription. Activity-dependent transcriptional dynamics in neurons, however, remain incompletely characterized because most previous efforts relied on measurement of steady-state mRNAs. Here, we use nascent RNA sequencing to profile transcriptional dynamics of primary neuron cultures undergoing network activity shifts. We find pervasive transcriptional changes, in which ∼45% of expressed genes respond to network activity shifts. We further link retinoic acid-induced 1 (RAI1), the Smith-Magenis syndrome gene, to the transcriptional program driven by reduced network activity. Remarkable agreement among nascent transcriptomes, dynamic chromatin occupancy of RAI1, and electrophysiological properties of Rai1-deficient neurons demonstrates the essential roles of RAI1 in suppressing synaptic upscaling in the naive network, while promoting upscaling triggered by activity silencing. These results highlight the utility of bona fide transcription profiling to discover mechanisms of activity-dependent chromatin remodeling that underlie normal and pathological synaptic plasticity.


Asunto(s)
Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Transactivadores/genética , Factores de Transcripción/genética , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Red Nerviosa/metabolismo , Red Nerviosa/fisiología , Prosencéfalo/citología , Prosencéfalo/metabolismo , Prosencéfalo/fisiología , Ratas , Ratas Sprague-Dawley , Sinapsis/genética , Sinapsis/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional
4.
Commun Biol ; 3(1): 278, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483278

RESUMEN

Histone H3 lysine 4 methylation (H3K4me) is extensively regulated by numerous writer and eraser enzymes in mammals. Nine H3K4me enzymes are associated with neurodevelopmental disorders to date, indicating their important roles in the brain. However, interplay among H3K4me enzymes during brain development remains largely unknown. Here, we show functional interactions of a writer-eraser duo, KMT2A and KDM5C, which are responsible for Wiedemann-Steiner Syndrome (WDSTS), and mental retardation X-linked syndromic Claes-Jensen type (MRXSCJ), respectively. Despite opposite enzymatic activities, the two mouse models deficient for either Kmt2a or Kdm5c shared reduced dendritic spines and increased aggression. Double mutation of Kmt2a and Kdm5c clearly reversed dendritic morphology, key behavioral traits including aggression, and partially corrected altered transcriptomes and H3K4me landscapes. Thus, our study uncovers common yet mutually suppressive aspects of the WDSTS and MRXSCJ models and provides a proof of principle for balancing a single writer-eraser pair to ameliorate their associated disorders.


Asunto(s)
Anomalías Múltiples/genética , Agresión , Anomalías Craneofaciales/genética , Espinas Dendríticas/metabolismo , Trastornos del Crecimiento/genética , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Hipertricosis/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Modelos Animales de Enfermedad , Histona Demetilasas/deficiencia , N-Metiltransferasa de Histona-Lisina/deficiencia , Masculino , Metilación , Ratones , Proteína de la Leucemia Mieloide-Linfoide/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA