Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 53(2): 991-1000, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35229279

RESUMEN

Increasing evidence demonstrated the oral microbial community profile characteristics affected by conventional cigarettes smoking, but few studies focus on oral microbiome in response to electronic cigarettes (E-cigarettes). This study aimed to investigate the effect of E-cigarettes on the oral microbiome and to describe the difference of oral community profiles between E-cigarette smokers and tobacco smokers. 16S rRNA V4 gene sequencing was performed to investigate the oral microbial profiles of 5 E-cigarette smokers, 14 tobacco smokers, 8 quitting tobacco smokers, and 6 nonsmokers. The Chao1, ACE, and Shannon diversity indexes increased significantly in saliva samples collected from E-cigarette smokers and tobacco smokers compared to the non-smokers, and no significant difference was found in alpha diversity between E-cigarette smokers and tobacco smokers. The main phyla Proteobacteria, Firmicutes, Bacteroidetes, and Fusobacteria and major genera Neisseria, Streptococcus, Prevotellaceae, Fusobacterium, and Porphyromonas dominated in the smoking groups, while Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Fusobacteria became the dominant phyla along with the genera Corynebacterium, Neisseria, Streptococcus, Actinomyces, and Porphyromonas in the nonsmokers. The differences in the phylum Actinobacteria and genus Corynebacterium contributed to various functional differences between smokers and nonsmokers. The difference on oral microbial and composition between E-cigarettes and common tobacco were associated with increased Prevotellaceae and decreased Neisseria. Additionally, smoking cessation could lead to re-establishment of the oral microbiome to that of nonsmokers. Our data demonstrate that E-cigarette smoking had different effects on the structure and composition of the oral microbial community compared to tobacco smoking. However, the short- and long-term impact of E-cigarette smoking on microbiome composition and function needs further exploration.


Asunto(s)
Fumar Cigarrillos , Sistemas Electrónicos de Liberación de Nicotina , Microbiota , Bacterias/genética , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética , Saliva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA