Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Plant Res ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242482

RESUMEN

The rice albumin (RAG) gene family belongs to the Tryp_alpha_amyl family. RAG2, specifically expressed in 14-21 DAP (days after pollination) seeds, regulates grain yield and quality. In this study, we identified another RAG family gene, RAL6, which exhibits specific expression in developing seeds, particularly in 7, 10, and 15 DAP seeds. Employing the CRISPR/Cas9 system, we analyzed functions of RAL6 and found that the ral6 lines (ral6-1, ral6-2, ral6-3, and ral6-4) displayed thinner seeds with significantly decreased 1000-grain weight and grain thickness compared to ZH11. Additionally, the cell width of spikelet cells, total protein and glutelin contents were significantly reduced in ral6. The germination assay and 1% TTC staining revealed a significant decrease in seed vigor among the ral6 lines. The alpha-amylase activity in ral6 mutant seeds was also markedly lower than in ZH11 seeds after 2 days of imbibition. Furthermore, co-expression analysis and GO annotation showed that co-expressed genes were involved in immune response, oligopeptide transport, and the glucan biosynthetic process. Collectively, our findings suggest that RAL6 plays a coordinating role in regulating grain weight and seed germination in rice.

2.
Plant Cell Physiol ; 65(5): 781-789, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38447119

RESUMEN

MicroRNAs (miRNAs) are known to play critical roles in regulating rice agronomic traits through mRNA cleavage or translational repression. Our previous study indicated that miR5504 regulates plant height by affecting cell proliferation and expansion. Here, the two independent homozygous mir5504 mutants (CR1 and CR2) and overexpression lines (OE1 and OE2) were further used to investigate the functions of miR5504. The panicle length, 1000-grain weight and grain yield per plant of miR5504-OE lines were identical to those of Nipponbare (NIP), but the 1000-grain weight of mir5504 mutants was reduced by about 10% and 9%, respectively. Meanwhile, the grain width and thickness of mir5504 mutants decreased significantly by approximately 10% and 11%, respectively. Moreover, the cytological results revealed a significant decrease in cell number along grain width direction and cell width in spikelet in mir5504, compared with those in NIP. In addition, several major storage substances of the rice seeds were measured. Compared to NIP, the amylose content of the mir5504 seeds was noticeably decreased, leading to an increase of nearly 10 mm in gel consistency (GC) in mir5504 lines. Further investigation confirmed that LOC_Os08g16914 was the genuine target of miR5504: LOC_Os08g16914 over-expression plants phenocopied the mir5504 mutants. This study provides insights into the role of miR5504 in rice seed development.


Asunto(s)
Grano Comestible , Regulación de la Expresión Génica de las Plantas , MicroARNs , Oryza , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Mutación , Pleiotropía Genética , Plantas Modificadas Genéticamente , ARN de Planta/genética , ARN de Planta/metabolismo , Amilosa/metabolismo
3.
Physiol Plant ; 175(5): e14023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882316

RESUMEN

miRNAs play critical roles in the regulation of plant growth and development by cleaving mRNA or repressing transcription. In our previous study, miR5504 with unknown functions was captured by small RNA sequencing. Here, the function and characters of miR5504 were extensively analyzed using CRISPR/Cas9, overexpression strategy, Northern blot, cytological analysis, and transcriptomics analysis. We found that the dwarf phenotype of mir5504 mutants (mir5504-1 and mir5504-2) appeared on 35-day seedlings and became more apparent at the mature stage. The cytological results showed a substantial decrease in the vascular bundle number, cell number and cell length in the mir5504 mutant compared with NIP. In addition, we found that miR5504 regulated plant height by targeting LOC_Os08g16914. The results of RNA-seq revealed that numerous biological processes were mainly enriched, including DNA-binding transcription factor activity, transferase activity, regulation of transcription, metabolic process, and protein binding. Meanwhile, KEEG analysis showed that numerous proteins were associated with cellular processes and metabolism pathways. Taken together, miR5504 may be involved in the regulation of plant height by affecting cell expansion and division of internode in rice.


Asunto(s)
Oryza , Oryza/metabolismo , Perfilación de la Expresión Génica , Fenotipo , RNA-Seq , Proliferación Celular/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
4.
Med Oncol ; 40(3): 89, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735165

RESUMEN

CAR-T therapy has shown successful in the treatment of certain types of hematological malignancy, while the efficacy of CAR-T cell in treating solid tumors has been limited due to the exhaustion of CAR-T caused by the tumor microenvironment in solid tumors. Therefore, improving the exhaustion of CAR-T cell is one of the inspiring strategies for CAR-T treatment of solid tumors. As an important regulator in T cell immunity, the transcription factor RUNX3 not only negatively regulates the terminal differentiation T-bet gene, reducing the ultimate differentiation of T cells, but also increases the residency of T cells in non-lymphoid tissues and tumors. By overexpressing RUNX3 in CAR-T cells, we found that increasing the expression of RUNX3 maintained the low differentiation of CAR-T cells, further improving the exhaustion of CAR-T cells during antigen stimulation. In vitro, we found that RUNX3 could reduce the release of cytokines while maintaining CAR-T cells function. In re-challenge experiments, CAR-T cells overexpressing RUNX3 (Runx3-OE CAR-T) were safer than conventional CAR-T cells, while RUNX3 could also maintain the anti-tumor efficacy of CAR-T cells in vivo. Collectively, we found that Runx3-OE CAR-T cells can improve CAR-T phenotype and reduce cytokines release while maintaining CAR-T cells function, which may improve the safety of CAR-T therapy in clinical trials.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Citocinas/metabolismo , Inmunoterapia Adoptiva , Neoplasias/terapia , Linfocitos T , Microambiente Tumoral , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo
5.
Plants (Basel) ; 11(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36501265

RESUMEN

Many lncRNAs have been shown to play a vital role in aging processes. However, how lncRNAs regulate seed aging remains unknown. In this study, we performed whole transcriptome strand-specific RNA sequencing of samples from rice embryos, analyzed the differences in expression of rice seed lncRNAs before and after artificial aging treatment (AAT), and systematically screened 6002 rice lncRNAs. During the AAT period, the expression levels of most lncRNAs (454) were downregulated and only four were upregulated among the 458 differentially expressed lncRNAs (DELs). Cis- or trans-regulated target genes of the four upregulated lncRNAs were mainly related to base repair, while 454 downregulated lncRNAs were related to plant-pathogen interaction, plant hormones, energy metabolism, and secondary metabolism. The pathways of DEL target genes were similar with those of differentially expressed mRNAs (DEGs). A competing endogenous RNA (ceRNA) network composed of 34 lncRNAs, 24 microRNAs (miRNA), and 161 mRNAs was obtained. The cDNA sequence of lncRNA LNC_037529 was obtained by rapid amplification of cDNA ends (RACE) cloning with a total length of 1325 bp, a conserved 5' end, and a non-conserved 3' end. Together, our findings indicate that genome-wide selection for lncRNA downregulation was an important mechanism for rice seed aging. LncRNAs can be used as markers of seed aging in rice. These findings provide a future path to decipher the underlying mechanism associated with lncRNAs in seed aging.

6.
Plant Physiol Biochem ; 183: 85-95, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35569169

RESUMEN

The glyoxalase pathway plays a vital role in the chemical detoxification of methylglyoxal (MG) in biological systems. Our previous study suggested that OsGLYI3 may be effective in seed natural aging. In this study, the rice OsGLYI3 gene was cloned and characterized as specifically expressed in the seed. The accelerated aging (AA) treatment results indicated significant roles of OsGLYI3 in seed longevity and vigor, as the seeds of the transgenic lines with overexpressed and knocked-out OsGLYI3 exhibited higher and lower germination, respectively. The AA treatment also increased the superoxide dismutase (SOD) activity in the overexpressed transgenic seeds compared to the wild-type seeds yet lowered the SOD activity in the CRISPR/Cas9-derived transgenic rice lines. Rice OsGLYI3 was markedly upregulated in response to NaCl induced stress conditions. Compared to wild-type plants, overexpressed transgenic rice lines exhibited increased GLYI activity, decreased MG levels and improved salt stress tolerance, while CRISPR/Cas9 knockout transgenic rice lines showed decreased glyoxalase I activity, increased MG levels, and greater sensitivity to stress treatments with NaCl. Collectively, our results confirmed for the first time that OsGLYI3 is specifically expressed in rice seeds and contributes to seed longevity and salt stress tolerance.


Asunto(s)
Lactoilglutatión Liasa , Oryza , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , Longevidad , Oryza/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Piruvaldehído/metabolismo , Tolerancia a la Sal , Semillas/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética , Superóxido Dismutasa/metabolismo
7.
Rice (N Y) ; 15(1): 7, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35084595

RESUMEN

Seed deterioration during rice seed storage can lead to seed vigor loss, which adversely affects agricultural production, the long-term preservation of germplasm resources, and the conservation of species diversity. However, the mechanisms underlying seed vigor maintenance remain largely unknown. In this study, 16 hybrid rice combinations were created using four sterile lines and four restorer lines that have been widely planted in southern China. Following artificial aging and natural aging treatments, germination percentage and metabolomics analysis by gas chromatography-mass spectrometry was used to identify the metabolite markers that could accurately reflect the degree of aging of the hybrid rice seeds. Significant differences in the degree of seed deterioration were observed among the 16 hybrid rice combinations tested, with each hybrid combination having a different germination percentage after storage. The hybrid rice combination with the storage-resistant restorer line Guanghui122 exhibited the highest germination percentage under both natural and artificial storage. A total of 89 metabolic peaks and 56 metabolites were identified, most of which were related to primary metabolism. Interestingly, the content of galactose, gluconic acid, fructose and glycerol in the seeds increased significantly during the aging process. Absolute quantification indicated that galactose and gluconic acid were highly significantly negatively correlated with the germination percentage of the seeds under the different aging treatments. The galactose content was significantly positively correlated with gluconic acid content. Additionally, glycerol showed a significant negative correlation with the germination percentage in most hybrid combinations. Based on the metabolomics analysis, metabolite markers that could accurately reflect the aging degree of hybrid rice seeds were identified. Galactose and gluconic acid were highly significantly negatively correlated with the germination percentage of the seeds, which suggested that these metabolites could constitute potential metabolic markers of seed vigor and aging. These findings are of great significance for the rapid and accurate evaluation of seed aging degree, the determination of seed quality, and the development of molecular breeding approaches for high-vigor rice seeds.

8.
Plant Cell Physiol ; 62(2): 366-377, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33399871

RESUMEN

Tea (Camellia sinensis [L.] O. Kuntze) tree is a perennial plant in which winter dormancy is an important biological adaptation to environmental changes. We discovered and reported a novel tea tree cultivar that can generate tender shoots in winter several years ago, but the molecular mechanism for this unique phenotype remains unknown . Here, we conducted comparative transcriptomics, proteomics and metabolomics along with phytohormone quantitation between the winter and spring tender shoots to investigate the physiological basis and putative regulatory mechanisms of its evergrowing character during winter. Our multi-omics study has led to the following findings. Gibberellin (GA) levels and key enzymes for GA biosynthesis and the signal transduction pathway were increased in the winter shoots, causing the ABA/GA content ratio to decrease, which might play a key regulatory role in maintaining normal growth during winter. The abundance of proteins, genes and metabolites involved in energy metabolism was all increased in winter shoots, indicating that energy is critical for continuous growth under the relatively weak-light and low-temperature environment. Abiotic resistance-related proteins and free amino acids were also increased in abundance in the winter shoots, which possibly represents an adaptation response to winter conditions. These results allowed us to hypothesize a novel molecular mechanism of adaptation for this unique tender shoot evergrowing in winter.


Asunto(s)
Camellia sinensis/fisiología , Brotes de la Planta/fisiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Camellia sinensis/genética , Camellia sinensis/crecimiento & desarrollo , Perfilación de la Expresión Génica , Metabolómica , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Proteómica , Estaciones del Año , Transducción de Señal/fisiología
9.
J Clin Lab Anal ; 34(9): e23414, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32488880

RESUMEN

BACKGROUND: Studies on gene polymorphism association are centered on childhood acute lymphoblastic leukemia (ALL), a common hematological malignancy in children younger than 16 years. Single-nucleotide polymorphisms (SNPs) in some genes, such as ARID5B and CDKN2B, are associated with the risk of childhood ALL. T-cell leukemia homeobox 1 (TLX1), a member of the HOX gene family, was identified based on its abnormal expression in T-lineage leukemia. This study aimed to determine whether TLX1 is associated with B-ALL and which SNP plays a significant role in ALL. METHODS: A total of 217 cases of ALL and 241 controls were included in this study. Six tag SNPs (rs75329544, rs946328, rs12415670, rs2075879, rs17113735, and rs1051723) were selected, and genotyping was carried out on Sequenom MassARRAY platform. RESULTS: Rs17113735 was possibly the risk locus associated with increased risk for ALL, whereas rs946328 was possibly associated with decreased risk for ALL. Moreover, rs17113735 was likely to be the risk locus for B-cell ALL (B-ALL), and rs2075879 was associated with decreased risk for B-ALL (P < .05). All SNPs in the two sample types (ALL and B-ALL samples) demonstrated linkage disequilibrium except between rs75329544 and rs2075879. Haplotype analysis showed no significant difference between the cases and controls in the two sample types. CONCLUSION: TLX1 gene polymorphisms are associated with ALL (rs17113735 and rs946328) and possibly play a significant role in B-ALL (rs17113735 and rs2075879). This work provides a reference for the diagnosis and therapy of this disease.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Proteínas de Homeodominio/genética , Leucemia de Células B , Polimorfismo de Nucleótido Simple/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogénicas/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , Niño , Preescolar , China , Femenino , Humanos , Lactante , Leucemia de Células B/epidemiología , Leucemia de Células B/genética , Desequilibrio de Ligamiento/genética , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
10.
Front Plant Sci ; 10: 828, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316534

RESUMEN

Abscisic acid (ABA) is a crucial phytohormone for the regulation of seed germination. The ABA content of seeds is regulated by synthesis and catabolic pathways. Coumarin, an important plant allelochemical, can inhibit seed germination effectively, although whether it is involved in the regulation of ABA content during seed germination has not been elucidated. For the study reported herein, we show that coumarin effectively inhibits rice seed germination and vivipary. We found that the ABA content gradually decreased in water-imbibed rice seeds and that the content and activity of the Oryza sativa 9-cis epoxycarotenoid dioxygenases (OsNCEDs), which are ABA synthases, decreased during seed germination. At the transcription level, the expression of OsNCED1-3 appeared to decrease, whereas the expression of the ABA 8'-hydroxylase 2 and 3 genes (OsABA8'ox2/3) first appeared to increase and then decrease. Samples of rice seeds were also imbibed in water containing coumarin, which increased their ABA content but did not significantly increase the activity or content of their OsNCEDs or OsNCED1-3 transcription. Interestingly, coumarin imbibition remarkably reduced OsABA8'ox2/3 expression in rice embryos, which partially explained how coumarin increased the ABA content of germinating rice embryos. Coumarin also inhibited the accumulation of reactive oxygen species (ROS) in rice embryos and increased the activity of superoxide dismutase and catalase, which are indispensable for seed germination. These results indicate that coumarin delays seed germination by inhibiting ABA catabolism, particularly by decreasing the expression of OsABA8'ox2/3 rather than by increasing ABA synthesis. Moreover, coumarin increases the ABA content while decreasing the ROS content in rice embryos. Our results enhance our understanding of the regulation of ABA and ROS during seed germination and provide theoretical support for application of coumarin to prevent sprouting before crop harvesting.

11.
Front Plant Sci ; 10: 848, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316541

RESUMEN

Glutaredoxins (Grxs) are a ubiquitous group of oxidoreductase enzymes that are important in plant growth and development; however, the functions of rice Grxs have not been fully elucidated. In this paper, we showed that one of the Grxs, encoded by OsGrxC2.2, exhibited Grx activity. Furthermore, we demonstrated that OsGrxC2.2 was able to regulate embryo development during embryogenesis. Transgenic rice lines overexpressing OsGrxC2.2 unexpectedly exhibited degenerate embryos as well as embryoless seeds. Our data indicated that the embryonic abnormalities occurred at an early stage during embryogenesis. We found that the expression of several endodermal layer marker genes for embryo development, such as OSH1 (apical region marker), OsSCR (L2 ground tissue marker), and OsPNH1 (L3 vascular tissue marker), were significantly decreased in the OsGrxC2.2-overexpressed transgenic rice lines. In contrast, the transcript levels of the majority of protodermal layer markers, including HAZ1, ROC2, ROC3, and RAmy1A, and the shoot apical meristem marker HB, showed little change between the wild-type (WT) and OsGrxC2.2-overexpressing embryos. Surprisingly, the seed weight of the overexpressed transgenic rice was remarkably increased in comparison to that of the WT. These results indicate that the overexpression of OsGrxC2.2 interferes with the normal embryogenesis of rice embryos and leads to increased grain weight. To the best of our knowledge, this is the first report that OsGrxC2.2 is a rice embryo development-associated gene.

12.
Plant Physiol Biochem ; 127: 590-598, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29729608

RESUMEN

Seed storability is an important trait for crop breeding, however, the mechanism underlying seed storability remains largely unknown. Here, a mass spectrometry-based comparative metabolomic study was performed for rice seeds before and after 24-month natural storage between two hybrid rice cultivars, IIYou 998 (IIY) with low storability and BoYou 998 (BY) with relative high storability. A total of 48 metabolites among 90 metabolite peaks detected were conclusively identified, and most of them are involved in the primary metabolism. During the 24-month storage, 19 metabolites with significant changes in abundance were found in the storage-sensitive IIY seeds, but only 8 in the BY seeds, most of which are free amino acids and soluble sugars. The observed changes of the metabolites in IIY seeds that are consistent with our protoemics results are likely to be involved in its sensitivity to storage. Levels of all identified 18 amino acid-related metabolites and most sugar-related metabolites were significantly higher in IIY seeds both before and after storage. However the level of raffinose was lower in IIY seeds before and after storage, and did not change significantly throughout the storage period in both two cultivars, suggesting its potential role in seed storability. Taken together, these results may help to improve our understanding of seed storability.


Asunto(s)
Almacenamiento de Alimentos , Metaboloma , Metabolómica , Oryza/metabolismo , Semillas/metabolismo , Factores de Tiempo
13.
BMC Plant Biol ; 17(1): 206, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29157222

RESUMEN

BACKGROUND: A recently discovered tea [Camellia sinensis (L.) O. Kuntze] cultivar can generate tender shoots in winter. We performed comparative proteomics to analyze the differentially accumulated proteins between winter and spring tender shoots of this clonal cultivar to reveal the physiological basis of its evergrowing character during winter. RESULTS: We extracted proteins from the winter and spring tender shoots (newly formed two leaves and a bud) of the evergrowing tea cultivar "Dongcha11" respectively. Thirty-three differentially accumulated high-confidence proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF / TOF MS). Among these, 24 proteins had increased abundance while nine showed were decreased abundance in winter tender shoots as compared with the spring tender shoots. We categorized the differentially accumulated proteins into eight critical biological processes based on protein function annotation including photosynthesis, cell structure, protein synthesis & destination, transporters, metabolism of sugars and polysaccharides, secondary metabolism, disease/defense and proteins with unknown functions. Proteins with increased abundance in winter tender shoots were mainly related to the processes of photosynthesis, cytoskeleton and protein synthesis, whereas those with decreased abundance were correlated to metabolism and the secondary metabolism of polyphenolic flavonoids. Biochemical analysis showed that the total contents of soluble sugar and amino acid were higher in winter tender shoots while tea polyphenols were lower as compared with spring tender shoots. CONCLUSIONS: Our study suggested that the simultaneous increase in the abundance of photosynthesis-related proteins rubisco, plastocyanin, and ATP synthase delta chain, metabolism-related proteins eIF4 and protease subunits, and the cytoskeleton-structure associated proteins phosphatidylinositol transfer protein and profilin may be because of the adaptation of the evergrowing tea cultivar "Dongcha11" to low temperature and light conditions. Histone H4, Histone H2A.1, putative In2.1 protein and protein lin-28 homologs may also regulate the development of winter shoots and their response to adverse conditions.


Asunto(s)
Camellia sinensis/crecimiento & desarrollo , Brotes de la Planta/fisiología , Proteómica/métodos , Camellia sinensis/fisiología , Electroforesis en Gel Bidimensional , Luz , Espectrometría de Masas , Fotosíntesis/fisiología , Proteínas de Plantas/análisis , Proteínas de Plantas/fisiología , Brotes de la Planta/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Estaciones del Año , Temperatura
14.
Plant Physiol Biochem ; 103: 31-44, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26950923

RESUMEN

Seed storability is considered an important trait in rice breeding; however, the underlying regulating mechanisms remain largely unknown. Here, we carried out a physiological and proteomic study to identify proteins possibly related to seed storability under natural conditions. Two hybrid cultivars, IIYou998 (IIY998) and BoYou998 (BY998), were analyzed in parallel because they share the same restorer line but have significant differences in seed storability. After a 2-year storage period, the germination percentage of IIY998 was significantly lower than that of BY998, whereas the level of malondialdehyde was reversed, indicating that IIY998 seeds may suffer from more severe damage than BY998 during storage. However, we did not find correlation between activities of antioxidant enzymes of superoxide dismutase, peroxidase, and catalase and seed storability. We identified 78 embryo proteins in embryo whose abundance varied more than 3-fold different during storage or between IIY998 and BY998. More proteins changed in abundance in IIY998 embryo (67 proteins) during storage than in BY998 (10 proteins). Several redox regulation proteins, mainly glutathione-related proteins, exhibited different degree of change during storage between BY998 and IIY998 and might play an important role protecting embryo proteins from oxidation. In addition, some disease/defense proteins, including DNA-damage-repair/toleration proteins, and a putative late embryogenesis abundant protein were significantly downregulated in IIY998, whereas their levels did not change in BY998, indicating that they might be correlated with seed storability. Further studies on these candidate seed storage proteins might help improve our understanding of seed aging.


Asunto(s)
Oryza/fisiología , Proteómica , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/fisiología , Antioxidantes/metabolismo , Cruzamiento , Catalasa/metabolismo , Germinación , Glutatión/metabolismo , Oryza/enzimología , Peroxidasas/metabolismo , Semillas/enzimología , Superóxido Dismutasa/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA