Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Environ Interact ; 1(1): 48-56, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37284131

RESUMEN

New plant functions in the exchange of greenhouse gases between ecosystems and atmosphere have recently been discovered. We tested whether photosynthetic activity has an effect on N2O emission rates from incubated plant-soil systems.Two laboratory experiments were performed. One to unravel possible effect of photosynthetic activity on the net N2O ecosystem exchange for two species (beech and ash saplings). The other to account for possible effects from rhizosphere and aboveground plant parts separately (ash sapling only).Total N2O emissions from both plant and plant-soil systems were significantly lower under light than in darkness (31%-65%). The photosynthetic effect only applied to the aboveground plant parts.Underlying processes have now to be unraveled to improve our understanding of ecosystem functioning. This will improve modeling and budgeting of greenhouse gas exchanges between ecosystems and the atmosphere.

2.
Plant Cell Environ ; 30(2): 176-86, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17238909

RESUMEN

A novel optical method for non-invasive, quantitative and high-resolution imaging of spatial and temporal pH dynamics in soils mediated by plant roots is introduced. This method overcomes present limitations of measurement of pH, mainly short-term and punctiform measurements, by recording long-term dynamics of the micro-pattern of pH in the root-soil interface without disturbance of the biological and physico-chemical conditions. Juncus effusus L., rooting in a permanently flooded rhizotron, was selected as the test organism for qualifying the technique. The measurements showed pronounced diurnal variations of pH along the roots, particularly along the elongation zone. Diurnal oscillation of pH caused by the roots reached up to 0.5 units. Long-term records at 4 s intervals over more than 8 weeks revealed considerable spatial and temporal patterns of pH dynamics in the rhizosphere of about 10% of the pH scale (pH 7.0-8.5). The measured data were validated by the use of pH electrodes. Concomitantly measured oxygen concentration showed hypoxic conditions around root tips (10-70 micromol O2 L-1) and almost anoxic conditions (0.9 micromol O2 L-1) in the bulk soil. The present study qualifies this novel pH-sensing technique as a powerful analytical tool for quantitative visualization of undisturbed bioprocess dynamics.


Asunto(s)
Magnoliopsida/metabolismo , Raíces de Plantas/metabolismo , Suelo/análisis , Concentración de Iones de Hidrógeno , Óptica y Fotónica , Oxígeno/análisis , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA