Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 642: 123086, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37257793

RESUMEN

The pharmaceutical industry continuously looks for ways to improve its development and manufacturing efficiency. In recent years, such efforts have been driven by the transition from batch to continuous manufacturing and digitalization in process development. To facilitate this transition, integrated data management and informatics tools need to be developed and implemented within the framework of Industry 4.0 technology. In this regard, the work aims to guide the data integration development of continuous pharmaceutical manufacturing processes under the Industry 4.0 framework, improving digital maturity and enabling the development of digital twins. This paper demonstrates two instances where a data integration framework has been successfully employed in academic continuous pharmaceutical manufacturing pilot plants. Details of the integration structure and information flows are comprehensively showcased. Approaches to mitigate concerns in incorporating complex data streams, including integrating multiple process analytical technology tools and legacy equipment, connecting cloud data and simulation models, and safeguarding cyber-physical security, are discussed. Critical challenges and opportunities for practical considerations are highlighted.


Asunto(s)
Manejo de Datos , Tecnología Farmacéutica , Industria Farmacéutica , Control de Calidad , Preparaciones Farmacéuticas
2.
Int J Pharm ; 587: 119621, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32663581

RESUMEN

Continuous manufacturing, an emerging technology in the pharmaceutical industry, has the potential to increase the efficiency, and agility of pharmaceutical manufacturing processes. To realize these potential benefits of continuous operations, effectively managing materials, equipment, analyzers, and data is vital. Developments for continuous pharmaceutical manufacturing have led to novel technologies and methods for processing material, designing and configuring individual equipment and process analyzers, as well as implementing strategies for active process control. However, limited work has been reported on managing abnormal conditions during operations to prevent unplanned deviations and downtime and sustain system capabilities. Moreover, although the sourcing, analysis, and management of real-time data have received growing attention, limited discussion exists on the continued verification of the infrastructure for ensuring reliable operations. Hence, this work introduces condition-based maintenance (CBM) as a general strategy for continually verifying and sustaining advanced pharmaceutical manufacturing systems, with a focus on the continuous manufacture of oral solid drug products (OSD-CM). Frameworks, such as CBM, benefit unified efforts towards continued verification and operational excellence by leveraging process knowledge and the availability of real-time data. A vital implementation consideration for manufacturing operations management applications, such as CBM, is a systems architecture and an enabling infrastructure. This work outlines the systems architecture design for CBM in OSD-CM and highlights sample fault scenarios involving equipment and process analyzers. For illustrative purposes, this work also describes the infrastructure implemented on an OSD-CM testbed, which uses commercially available automation systems and leverages enterprise architecture standards. With the increasing digitalization of manufacturing operations in the pharmaceutical industry, proactively using process data towards modernizing maintenance practices is relevant to a single unit operation as well as to a series of physically integrated unit operations.


Asunto(s)
Preparaciones Farmacéuticas , Tecnología Farmacéutica , Automatización , Industria Farmacéutica
3.
Int J Pharm ; 563: 259-272, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30951859

RESUMEN

Data provided by in situ sensors is always affected by some level of impreciseness as well as uncertainty in the measurements due to process operation disturbance or material property variance. In-process data precision and reliability should be considered when implementing active product quality control and real-time process decision making in pharmaceutical continuous manufacturing. Data reconciliation is an important strategy to address such imperfections effectively, and to exploit the data redundancy and data correlation based on process understanding. In this study, a correlation between tablet weight and main compression force in a rotary tablet press was characterized by the classical Kawakita equation. A load cell, situated at the exit of the tablet press chute, was also designed to measure the tablet production rate as well as the tablet weight. A novel data reconciliation strategy was proposed to reconcile the tablet weight measurement subject to the correlation between tablet weight and main compression force, in such, the imperfect tablet weight measurement can be reconciled with the much more precise main compression force measurement. Special features of the Welsch robust estimator to reject the measurement gross errors and the Kawakita model parameter estimation to monitor the material property variance were also discussed. The proposed data reconciliation strategy was first evaluated with process control open-loop and closed-loop experimental data and then integrated into the process control system in a continuous tablet manufacturing line. Specifically, the real-time reconciled tablet weight measurements were independently verified with an at-line Sotax Auto Test 4 tablet weight measurements every five minutes. Promising and reliable performance of the reconciled tablet weight measurement was demonstrated in achieving process automation and quality control of tablet weight in pilot production runs.


Asunto(s)
Exactitud de los Datos , Comprimidos , Tecnología Farmacéutica/métodos , Automatización , Presión , Control de Calidad
4.
J Pharm Sci ; 108(8): 2599-2612, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30904476

RESUMEN

Advances in continuous manufacturing in the pharmaceutical industry necessitate reliable process monitoring systems that are capable of handling measurement errors inherent in all sensor technologies and detecting measurement outliers to ensure operational reliability. The purpose of this work was to demonstrate data reconciliation (DR) and gross error detection methods as real-time process management tools to accomplish robust process monitoring. DR mitigates the effects of random measurement errors, while gross error detection identifies nonrandom sensor malfunctions. DR is an established methodology in other industries (i.e., oil and gas) and was recently investigated for use in drug product continuous manufacturing. This work demonstrates the development and implementation of model-based steady-state data reconciliation on 2 different end-to-end continuous tableting lines: direct compression and dry granulation. These tableting lines involve different equipment and sensor configurations, with sensor network redundancy achieved using equipment-embedded sensors and in-line process analytical technology tools for the critical process parameters and critical quality attributes. The nonlinearity of the process poses additional challenges to solve the steady-state data reconciliation optimization problem in real time. At-line and off-line measurements were used to validate the framework results.


Asunto(s)
Composición de Medicamentos/métodos , Comprimidos , Algoritmos , Composición de Medicamentos/instrumentación , Diseño de Equipo , Control de Calidad , Comprimidos/química
5.
ESCAPE ; 46: 1327-1332, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-36790944

RESUMEN

The pharmaceutical industry has been undergoing a paradigm shift towards continuous manufacturing, under which novel approaches to real-time product quality assurance have been investigated. A new perspective, entitled Quality-by-Control (QbC), has recently been proposed as an important extension and complementary approach to enable comprehensive Quality-by-Design (QbD) implementation. In this study, a QbC approach was demonstrated for a commercial scale tablet press in a continuous direct compaction process. First, the necessary understanding of the compressibility of a model formulation was obtained under QbD guidance using a pilot scale tablet press, Natoli BLP-16. Second, a data reconciliation strategy was used to reconcile the tablet weight measurement based on this understanding on a commercial scale tablet press, Natoli NP-400. Parameter estimation to monitor and update the material property variance was also considered. Third, a hierarchical three-level control strategy, which addressed the fast process dynamics of the commercial scale tablet press was designed. The strategy consisted of the Level 0 built-in machine control, Level 1 decoupled Proportional Integral Derivative (PID) control loops for tablet weight, pre-compression force, main compression force, and production rate control, and Level 2 data reconciliation of sensor measurements. The effective and reliable performance, which could be demonstrated on the rotary tablet press, confirmed that a QbC approach, based on product and process knowledge and advanced model-based techniques, can ensure robustness and efficiency in pharmaceutical continuous manufacturing.

6.
Comput Chem Eng ; 125: 216-231, 2019 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-36845965

RESUMEN

The Quality-by-Design (QbD) guidance issued by the US Food and Drug Administration (FDA) has catalyzed the modernization of pharmaceutical manufacturing practices including the adoption of continuous manufacturing. Active process control was highlighted recently as a means to improve the QbD implementation. This advance has since been evolving into the concept of Quality-by-Control (QbC). In this study, the concept of QbC is discussed, including a definition of QbC, a review of the recent developments towards the QbC, and a perspective on the challenges of QbC implementation in continuous manufacturing. The QbC concept is demonstrated using a rotary tablet press, integrated into a pilot scale continuous direct compaction process. The results conclusively showed that active process control, based on product and process knowledge and advanced model-based techniques, including data reconciliation, model predictive control (MPC), and risk analysis, is indispensable to comprehensive QbC implementation, and ensures robustness and efficiency.

7.
J Loss Prev Process Ind ; 55: 411-422, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36777050

RESUMEN

The shift from batch to continuous manufacturing, which is occurring in the pharmaceutical manufacturing industry has implications on process safety and product quality. It is now understood that fault-tolerant process control of critical process parameters (CPPs) and critical quality attributes (CQAs) is of paramount importance to the realization of safe operations and quality products. In this study, a systematic framework for fault-tolerant process control system design, analysis, and evaluation of pharmaceutical continuous oral solid dosage manufacturing is proposed. The framework encompasses system identification, controller design and analysis (controllability, stability, resilience, etc.), hierarchical three-level control structures (model predictive control, state estimation, data reconciliation, etc.), risk mapping, assessment and planning (Risk MAP) strategies, and control performance evaluation. The key idea of the proposed framework is to identify the potential risks associated with the control system design itself, the material property variations, and other process uncertainties, under which the control strategies must be evaluated. The framework is applied to a continuous direct compaction process, specifically the feeding-blending subsystem, wherein the major source of variance in the process operation and product quality arises. It is demonstrated, using simulations and experimentally, that the process operation failures and product quality variations in the feeding-blending system can be mitigated and managed through the proposed systematic fault-tolerant process control system design and risk analysis framework.

8.
Int Symp Process Syst Eng ; 44: 2149-2154, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-36790945

RESUMEN

The progress in the mechanistic understanding of the unit operations and the availability of multiple sensor technologies enable the inline implementation of data reconciliation and gross error detection methods in continuous pharmaceutical manufacturing. In this work, we demonstrate the benefits of accurate real-time monitoring of the process state in a continuous tableting process, with case studies representative of common situations in pilot-plant or manufacturing line implementation.

9.
J Pharm Sci ; 106(12): 3591-3603, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28867200

RESUMEN

The progress in continuous downstream manufacturing of oral solid doses demands effective real-time process management, with monitoring at its core. This study evaluates the feasibility of using a commercial sensor to measure the mass flow rate of the particulates, a critical process variable in continuous manufacturing. The sensor independently measures X-ray attenuation and cross-correlation velocimetry of particulate flow in real time. Steady-state flow rates of blends comprised primarily of acetaminophen and microcrystalline-cellulose are monitored using the sensor, with simultaneous weighing scale measurements, to calibrate the sensor and investigate the measurement accuracy. The free-fall flow measurement of the powder and granule blends in a conduit is linearly proportional to the X-ray attenuation. Relative standard deviations of ∼3%-7% for 1 s monitoring are observed and a measurement error of approximately 5% suggests the usability of the sensor for real-time monitoring. The sensor measurement is robust for operational variations in composition, addition of lubricant or glidant and reuse of material for PAT tool calibration. The measurement relative standard deviations depend on particulate flow dynamics at the sensor location. This requires experimental evaluation for a given material at the sensor location, to capture the flow dynamics of the particulate stream through the sensor.


Asunto(s)
Comprimidos/química , Acetaminofén/química , Calibración , Celulosa/química , Composición de Medicamentos/métodos , Polvos/química , Reología/métodos , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA