Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Healthc Eng ; 2022: 7853604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35859929

RESUMEN

These days, mobile computing devices are ubiquitous and are widely used in almost every facet of daily life. In addition, computing and the modern technologies are not really coexisting anymore. With a wide range of conditions and areas of concern, the medical domain was also concerned. New types of technologies, such as context-aware systems and applications, are constantly being infused into the medicine field. An IoT-enabled healthcare system based on context awareness is developed in this work. In order to collect and store the patient data, smart medical devices are employed. Context-aware data from the database includes the patient's medical records and personal information. The MRIPPER (Modified Repeated Incremental Pruning to Produce Error) technique is used to analyze and classify the data. A rule-based machine learning method is used in this algorithm. The rules for analyzing datasets in order to make predictions about heart disease are framed using this algorithm. MATLAB is used to simulate the proposed model's performance analysis. Other models like random forest, J48, CART, JRip, and OneR algorithms are also compared to validate the proposed model's performance. The proposed model obtains 98.89 percent accuracy, 96.76 percent precision, 99.05 percent sensitivity, 94.35 percent specificity, and 97.60 percent f-score. Predictions for subjects in the normal and abnormal classes were both accurate with 97.38 for normal and 97.93 for abnormal subjects.


Asunto(s)
Algoritmos , Cardiopatías , Bases de Datos Factuales , Cardiopatías/diagnóstico por imagen , Humanos , Aprendizaje Automático
2.
Sensors (Basel) ; 22(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35062437

RESUMEN

Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient's body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%.


Asunto(s)
Cardiopatías , Internet de las Cosas , Inteligencia Artificial , Atención a la Salud , Cardiopatías/diagnóstico por imagen , Humanos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA