Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 948: 174825, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39019267

RESUMEN

Temporary rivers, forming the majority of river networks worldwide, are key biodiversity hotspots. Despite their great value for maintaining biodiversity and ecosystem functioning, they are often neglected in biomonitoring programs due to several challenges, such as their variable hydromorphology and the difficulty of establishing reference conditions given their dynamic nature, resulting in highly variable communities. Disconnected pools often form in temporary rivers when flow ceases, providing refuge for aquatic taxa. Given their importance for biodiversity conservation, revising and adapting biotic indices are needed. Here, we evaluate the performance of current biological indices designed for perennial rivers (macroinvertebrates, diatoms) and functional metrics (macroinvertebrates) in assessing biological quality of disconnected pools. We sampled 55 disconnected pools in Catalonia, NE Spain, covering local (e.g., physico-chemical variables, water chemistry) and regional (e.g., human influence, hydrological variables at the water body level) natural and anthropogenic gradients. Only a few macroinvertebrate biotic indices (e.g., family richness, EPT/EPT + OCH and OCH) showed strong responses to anthropogenic predictors and were unaffected by natural predictors at both local and regional scales, making them suitable for biomonitoring. Of the newly adopted functional metrics of macroinvertebrate communities tested, only two (i.e., functional redundancy of predators and response diversity based on the total community) responded strongly to anthropogenic predictors. The rest showed varying responses to the interactive effect of anthropogenic and natural predictors, requiring calibration efforts. Models assessing these metrics explained <40 % of the total variation, likely due to the interplay of colonization/extinction dynamics and density-dependent trophic interactions governing community assemblages in disconnected pools. Although some existing biological metrics could potentially be used to monitor the ecological status of disconnected pools, we call for further development of biomonitoring tools specifically designed for these habitats since they will become more widespread with global change.


Asunto(s)
Biodiversidad , Monitoreo del Ambiente , Invertebrados , Ríos , Ríos/química , España , Invertebrados/fisiología , Monitoreo del Ambiente/métodos , Animales , Monitoreo Biológico/métodos , Ecosistema
2.
Sci Total Environ ; 607-608: 519-540, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28704676

RESUMEN

When the regime of a river is not perennial, there are four main difficulties with the use of hydrographs for assessing hydrological alteration: i) the main hydrological features relevant for biological communities are not quantitative (discharges) but qualitative (phases such as flowing water, stagnant pools or lack of surface water), ii) stream flow records do not inform on the temporal occurrence of stagnant pools, iii) as most of the temporary streams are ungauged, their regime has to be evaluated by alternative methods such as remote sensing or citizen science, and iv) the biological quality assessment of the ecological status of a temporary stream must follow a sampling schedule and references adapted to the flow- pool-dry regime. To overcome these challenges within an operational approach, the freely available software tool TREHS has been developed within the EU LIFE TRIVERS project. This software permits the input of information from flow simulations obtained with any rainfall-runoff model (to set an unimpacted reference stream regime) and compares this with the information obtained from flow gauging records (if available) and interviews with local people, as well as instantaneous observations by individuals and interpretation of ground-level or aerial photographs. Up to six metrics defining the permanence of water flow, the presence of stagnant pools and their temporal patterns of occurrence are used to determine natural and observed river regimes and to assess the degree of hydrological alteration. A new regime classification specifically designed for temporary rivers was developed using the metrics that measure the relative permanence of the three main phases: flow, disconnected pools and dry stream bed. Finally, the software characterizes the differences between the natural and actual regimes, diagnoses the hydrological status (degree of hydrological alteration), assesses the significance and robustness of the diagnosis and recommends the best periods for biological quality samplings.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Ríos , Programas Informáticos , Biota , Hidrología , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA