RESUMEN
The consumption of fatty acids offers significant health benefits; however, they are prone to degradation by environmental factors. One method to preserve these fatty acids is the addition of synthetic antioxidants. This study focuses on the determination of peroxide and MDA formation rates at temperatures of 25 °C, 45 °C, and 65 °C. The oxidative stability of cold-pressed avocado oil was evaluated using pure astaxanthin, TBHQ, and H. pluvialis extract at concentrations of 100, 500, and 1000 ppm. Kinetic models and thermodynamic analysis were applied to determine the oxidation rate and compare the antioxidant effects of H. pluvialis extract with astaxanthin and TBHQ. The Arrhenius model was used to estimate activation energy (Ea), enthalpy, entropy, and free energy. Avocado oil with 500 ppm of H. pluvialis extract showed antioxidant effects comparable to TBHQ and pure astaxanthin. The activation energy of plain avocado oil was 40.47 kJ mol-1, while with H. pluvialis extract, it was 54.35 kJ mol-1. These findings suggest that H. pluvialis extract offers effective antioxidant properties and could serve as a natural alternative to synthetic antioxidants in food applications, despite the limitations of unprotected astaxanthin.
RESUMEN
The Capulin almond is a seed of the Prunus serotina (var. capuli) that belongs to the Rosaceae family. In this study, the valorization of the Capulin almond was performed by extracting antioxidants contained in the shell, paste, and oil (extracted by manual cold pressing process) of Prunus serotina treated with methanol, ethanol, acetone, and acidified water (pH 4) in a ratio of 1:5 (w/v). Total phenols were performed using the Folin-Ciocalteu method and expressed as gallic acid equivalents (GAE), antioxidant activity was determined by ABTS and DPPH methods and expressed as Trolox equivalents (TE). Finally, the total flavonoids were determined using a catechin calibration curve and reported as catechin equivalents (CE). The highest extraction of total phenols in shell was obtained with methanol (1.65 mg GAE/g sample) and the lowest using acidified water (0.97 mg GAE/g sample). However, extraction with acidified water favored this process in the paste (1.42 mg GAE/g sample), while the use of solvents did not influence it significantly (0.72 to 0.79 mg GAE/g sample). Regarding the total flavonoids, the values for the shell, paste, and oil were of 0.37, 0.78, and 0.34 mg CE/g sample, respectively, while that corresponding to the antioxidant activity evaluated with ABTS and DPPH were of 1527.78, 1229.17, 18894.44 µM TE/g, and, 568.45, 562.5 and 4369.05 mM TE/g sample, respectively. Finally, our results suggest that by-products such as the shell, paste, and oil obtained from Prunus serotina (var. capuli) represent a potential alternative for the recovery of bioactive compounds with antioxidant activity such as phenolic compounds and flavonoids.
RESUMEN
The aim of this research was to develop and characterize five gelled double emulsions based on chia mucilage (CM) and different biopolymers (κ-carrageenan, C; locust bean gum, L; thixogum, T; and whey protein concentrate, W) loaded with green tea extract (GTE). Gelled double emulsions consisted of W1 (whey-protein-concentrate/sodium-azide/NaCl/GTE)/O and (PGPR/canola-oi)/W2 (CM, CMC, CML, CMT and CMW), and were characterized based on physicochemical properties during 35 days of storage. Optical microscopy clearly showed the drops of the internal phase surrounded by droplets of oil dispersed in the second aqueous phase; the droplet size was higher for CMT and lowest for CMW. In addition, all emulsions were highly stable at creaming and were effective in reducing the loss of antioxidant activity (88.82%) and total phenols (64.26%) during storage; CMT, CML and CM were the most effective. Furthermore, all emulsions showed a protective effect by modulating the release of the GTE in a simulated gastrointestinal environment, allowing a controlled release during the gastric-intestinal digestion phases and reaching its maximum release in the intestinal phase (64.57-83.31%). Thus, gelled double emulsions are an alternative for the preservation of GTE and could be a potential alternative for their application in the development of functional foods.
RESUMEN
Egg yolk is used as an emulsifying agent. Nevertheless, its high concentration of cholesterol is linked to chronic degenerative diseases that cause cardiovascular disease. In this study, three methods for reducing the level of cholesterol in egg yolks were studied. The first method consisted of physical separation of the granules contained in the yolk (NaG). The second method applied was the use of anionic chelating biopolymers, such as arabic gum solution (AG) and mesquite gum solution (MG), and the third method was extraction with a solvent (SA). For this purpose, the cholesterol present in egg yolks, the microstructure, particle size, zeta potential, and its emulsifying capacity were determined. The amount of cholesterol removed was 97.24% using 1% mesquite gum (MG1%), and 93.26% using 1% Arabic gum (AG1%). The zeta potential was determined, and the isoelectric point (ζ = 0) of egg yolk was identified as pH 4.6. While, at this pH, the zeta potential of mesquite gum was -14.8 mV, the zeta potential for the arabic gum was -16 mV. The emulsifying capacity of MG1% was 62.95%, while the emulsifying capacity of AG1% was 63.57%. The complex obtained can be used in the development of functional foods reduced in cholesterol.