Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108433

RESUMEN

The initial phases of molecular and cellular maladaptive bone responses in early chronic kidney disease (CKD) remain mostly unknown. We induced mild CKD in spontaneously hypertensive rats (SHR) by either causing arterial hypertension lasting six months (sham-operated rats, SO6) or in its' combination with 3/4 nephrectomy lasting two and six months (Nx2 and Nx6, respectively). Sham-operated SHRs (SO2) and Wistar Kyoto rats (WKY2) with a two-month follow-up served as controls. Animals were fed standard chow containing 0.6% phosphate. Upon follow-up completion in each animal, we measured creatinine clearance, urine albumin-to-creatinine ratio, renal interstitial fibrosis, inorganic phosphate (Pi) exchange, intact parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, Dickkopf-1, sclerostin, and assessed bone response by static histomorphometry and gene expression profiles. The mild CKD groups had no increase in renal Pi excretion, FGF23, or PTH levels. Serum Pi, Dickkopf-1, and sclerostin were higher in Nx6. A decrease in trabecular bone area and osteocyte number was obvious in SO6. Nx2 and Nx6 had additionally lower osteoblast numbers. The decline in eroded perimeter, a resorption index, was only apparent in Nx6. Significant downregulation of genes related to Pi transport, MAPK, WNT, and BMP signaling accompanied histological alterations in Nx2 and Nx6. We found an association between mild CKD and histological and molecular features suggesting lower bone turnover, which occurred at normal levels of systemic Pi-regulating factors.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Ratas , Animales , Riñón/metabolismo , Osteogénesis , Proteínas de Transporte de Fosfato/metabolismo , Creatinina/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Insuficiencia Renal Crónica/complicaciones , Hormona Paratiroidea/metabolismo , Fosfatos/metabolismo , Transducción de Señal , Expresión Génica
2.
Biochemistry (Mosc) ; 88(3): 337-352, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37076281

RESUMEN

Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.


Asunto(s)
Comunicación Celular , Lípidos , Neuroglía , Neuronas , Ácido Araquidónico/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Colesterol/metabolismo , Microglía/citología , Microglía/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Plasticidad Neuronal , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Ácidos Fosfatidicos/metabolismo , Transducción de Señal , Humanos , Animales
3.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924991

RESUMEN

BACKGROUND: Arterial hypertension (AH) is associated with heart and chronic kidney disease (CKD). However, the precise mechanisms of myocardial remodeling (MR) in the settings of CKD remain elusive. We hypothesized that TRPC6, calcineurin/NFAT, and Wnt/ß-catenin signaling pathways are involved in the development of MR in the background of CKD and AH. METHODS: Early CKD was induced by performing a 5/6 nephrectomy (5/6NE) in spontaneously hypertensive rats (SHR-NE). Sham-operated (SO) SHR (SHR-SO) and Wistar Kyoto (WKY-SO) rats served as controls. Systolic blood pressure (SBP), heart rate, myocardial mass index (MMI), serum creatinine, cardiomyocyte diameter (dCM), myocardial fibrosis (MF), serum and kidney α-Klotho levels, myocardial expression of calcineurin (CaN), TRPC6, and ß-catenin were measured two months after 5/6NE or SO. RESULTS: NE-induced kidney dysfunction corresponded to mild-to-moderate human CKD and was associated with an increase in FGF23 and a decrease in renal α-Klotho. The levels of SBP, MMI, dCM, and MF were higher in SHRs compared to WKY-SO as well as in SHR-NE vs. SHR-SO. The MR was associated with increased cardiomyocyte expression of CaN/NFAT and ß-catenin along with its intracellular re-distribution. TRPC6 protein levels were substantially elevated in both SHR groups with higher Trpc6 mRNA expression in SHR-NE. CONCLUSIONS: The Wnt/ß-catenin and TRPC6/CaN/NFAT hypertrophic signaling pathways seem to be involved in myocardial remodeling in the settings of AH and CKD and might be mediated by FGF23 and α-Klotho axis.


Asunto(s)
Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPC/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Calcineurina/metabolismo , Cardiomegalia/etiología , Factor-23 de Crecimiento de Fibroblastos , Hipertensión/complicaciones , Masculino , Factores de Transcripción NFATC/metabolismo , Nefrectomía , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Insuficiencia Renal Crónica/complicaciones , Remodelación Ventricular
4.
J Mol Neurosci ; 70(5): 635-646, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31865524

RESUMEN

The pentose phosphate pathway (PPP) of glucose metabolism in the brain serves as a primary source of NADPH which in turn plays a crucial role in multiple cellular processes, including maintenance of redox homeostasis and antioxidant defense. In our model of protective mild hypobaric hypoxia in rats (3MHH), an inverse correlation between hypoxia-inducible factor-1 (HIF1) activity and mRNA levels of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP, was observed. In the present study, it was demonstrated that severe hypobaric hypoxia (SH) induced short-term upregulation of HIF1 alpha-subunit (HIF1α) in the hippocampal CA1 subfield and decreased the activity of G6PD. The levels of NADPH were also reduced, promoting oxidative stress, triggering apoptosis, and neuronal loss. Injection of a HIF1 inhibitor (HIF1i), topotecan hydrochloride (5 mg/kg, i.p.), before SH prevented the upregulation of HIF1α and normalized G6PD activity. In addition, HIF1i injection caused an increase in NADPH levels, normalization of total glutathione levels and of the cellular redox status as well as suppression of free-radical and apoptotic processes. These results demonstrate a new molecular mechanism of post-hypoxic cerebral pathology development which involves HIF1-dependent PPP depletion and support a recently suggested injurious role of HIF1 activation in the acute phase of cerebral hypoxia/ischemia. Application of PPP stimulators in early post-hypoxic/ischemic period might represent a promising neuroprotective strategy. Graphical abstract HIF1-dependent down-regulation of the pentose phosphate pathway contributes to the hypoxia-induced oxidative stress and neuronal apoptosis in the rat hippocampus.


Asunto(s)
Apoptosis , Hipocampo/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Neuronas/metabolismo , Vía de Pentosa Fosfato , Topotecan/farmacología , Animales , Regulación hacia Abajo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipoxia/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratas , Ratas Wistar , Topotecan/uso terapéutico
5.
Neurochem Res ; 44(6): 1425-1436, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30448928

RESUMEN

Post-conditioning is exposure of an injured organism to the same harmful factors but of milder intensity which mobilizes endogenous protective mechanisms. Recently, we have developed a novel noninvasive post-conditioning (PostC) protocol involving three sequential episodes of mild hypobaric hypoxia which exerts pronounced neuroprotective action. In particular, it prevents development of pathological cascades caused by severe hypobaric hypoxia (SH) such as cellular loss, lipid peroxidation, abnormal neuroendocrine responses and behavioural deficit in experimental animals. Development of these post-hypoxic pathological effects has been associated with the delayed reduction of hypoxia-inducible factor 1 (HIF1) regulatory α-subunit levels in rat hippocampus, whereas PostC up-regulated it. The present study has been aimed at experimental examination of the hypothesis that intrinsic mechanisms underlying the neuroprotective and antioxidant effects of PostC involves HIF1-dependent stimulation of the pentose phosphate pathway (PPP). We have observed that SH leads to a decrease of glucose-6-phosphate dehydrogenase (G6PD) activity in the hippocampus and neocortex of rats as well as to a reduction in NADPH and total glutathione levels. This depletion of the antioxidant defense system together with excessive lipid peroxidation during the reoxygenation phase resulted in increased oxidative stress and massive cellular death observed after SH. In contrast, PostC led to normalization of G6PD activity, stabilization of the NADPH and total glutathione levels and thereby resulted in recovery of the cellular redox state and prevention of neuronal death. Our data suggest that stabilization of the antioxidant system via HIF1-associated PPP regulation represents an important neuroprotective mechanism enabled by PostC.


Asunto(s)
Encéfalo/metabolismo , Hipoxia Encefálica/prevención & control , Hipoxia Encefálica/terapia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Neuroprotección/fisiología , Vía de Pentosa Fosfato/fisiología , Animales , Encéfalo/patología , Glucosafosfato Deshidrogenasa/metabolismo , Glutatión/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/patología , Masculino , NADP/metabolismo , Neocórtex/metabolismo , Neocórtex/patología , Estrés Oxidativo/fisiología , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA