Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 5: 3174, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24448552

RESUMEN

Propagation and differentiation of stem cell populations are tightly regulated to provide sufficient cell numbers for tissue formation while maintaining the stem cell pool. Embryonic parts of the mammalian placenta are generated from differentiating trophoblast stem cells (TSCs) invading the maternal decidua. Here we demonstrate that lysine-specific demethylase 1 (Lsd1) regulates differentiation onset of TSCs. Deletion of Lsd1 in mice results in the reduction of TSC number, diminished formation of trophectoderm tissues and early embryonic lethality. Lsd1-deficient TSCs display features of differentiation initiation, including alterations of cell morphology, and increased migration and invasion. We show that increased TSC motility is mediated by the premature expression of the transcription factor Ovol2 that is directly repressed by Lsd1 in undifferentiated cells. In summary, our data demonstrate that the epigenetic modifier Lsd1 functions as a gatekeeper for the differentiation onset of TSCs, whereby differentiation-associated cell migration is controlled by the transcription factor Ovol2.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Histona Demetilasas/fisiología , Células Madre/citología , Trofoblastos/citología , Animales , Femenino , Ratones , Embarazo
2.
Mol Biol Evol ; 24(10): 2266-76, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17660505

RESUMEN

The human genome is a mosaic with respect to its evolutionary history. Based on a phylogenetic analysis of 23,210 DNA sequence alignments from human, chimpanzee, gorilla, orangutan, and rhesus, we present a map of human genetic ancestry. For about 23% of our genome, we share no immediate genetic ancestry with our closest living relative, the chimpanzee. This encompasses genes and exons to the same extent as intergenic regions. We conclude that about 1/3 of our genes started to evolve as human-specific lineages before the differentiation of human, chimps, and gorillas took place. This explains recurrent findings of very old human-specific morphological traits in the fossils record, which predate the recent emergence of the human species about 5-6 MYA. Furthermore, the sorting of such ancestral phenotypic polymorphisms in subsequent speciation events provides a parsimonious explanation why evolutionary derived characteristics are shared among species that are not each other's closest relatives.


Asunto(s)
Secuencia de Bases , Evolución Molecular , Especiación Genética , Genoma Humano , Primates/genética , Análisis de Secuencia de ADN , Animales , Cromosomas Humanos X/genética , Humanos , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
3.
BMC Genomics ; 5(1): 92, 2004 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-15588320

RESUMEN

BACKGROUND: Defensins are important components of innate immunity to combat bacterial and viral infections, and can even elicit antitumor responses. Clusters of defensin (DEF) genes are located in a 2 Mb range of the human chromosome 8p23.1. This DEF locus, however, represents one of the regions in the euchromatic part of the final human genome sequence which contains segmental duplications, and recalcitrant gaps indicating high structural dynamics. RESULTS: We find that inter- and intraindividual genetic variations within this locus prevent a correct automatic assembly of the human reference genome (NCBI Build 34) which currently even contains misassemblies. Manual clone-by-clone alignment and gene annotation as well as repeat and SNP/haplotype analyses result in an alternative alignment significantly improving the DEF locus representation. Our assembly better reflects the experimentally verified variability of DEF gene and DEF cluster copy numbers. It contains an additional DEF cluster which we propose to reside between two already known clusters. Furthermore, manual annotation revealed a novel DEF gene and several pseudogenes expanding the hitherto known DEF repertoire. Analyses of BAC and working draft sequences of the chimpanzee indicates that its DEF region is also complex as in humans and DEF genes and a cluster are multiplied. Comparative analysis of human and chimpanzee DEF genes identified differences affecting the protein structure. Whether this might contribute to differences in disease susceptibility between man and ape remains to be solved. For the determination of individual DEF gene repertoires we provide a molecular approach based on DEF haplotypes. CONCLUSIONS: Complexity and variability seem to be essential genomic features of the human DEF locus at 8p23.1 and provides an ongoing challenge for the best possible representation in the human reference sequence. Dissection of paralogous sequence variations, duplicon SNPs ans multisite variations as well as haplotypes by sequencing based methods is the way for future studies of interindividual DEF locus variability and its disease association.


Asunto(s)
Cromosomas Humanos Par 8 , Defensinas/genética , Duplicación de Gen , Genes Reporteros , Polimorfismo Genético , Mapeo Cromosómico/métodos , Biología Computacional/métodos , Variación Genética , Genoma Humano , Haplotipos , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
4.
Mol Cell ; 16(6): 867-80, 2004 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-15610731

RESUMEN

RhoA signaling regulates the activity of the transcription factor SRF (serum response factor) during muscle differentiation. How RhoA signaling is integrated at SRF target promoters to achieve muscle-lineage-specific expression is largely unknown. Using large-scale expression profiling combined with bioinformatic and biochemical approaches, we identified several SRF target genes, including Fhl2, encoding a transcriptional cofactor that is highly expressed in the heart. SRF binds the Fhl2 promoter in vivo and regulates Fhl2 expression in response to RhoA activation. FHL2 protein and SRF interact physically, and FHL2 binds the promoters of SRF-responsive smooth muscle (SM) genes, but not the promoters of immediate-early genes (IEGs), in response to RhoA. FHL2 antagonizes induction of SM genes, but not IEGs or cardiac genes, by competing with the coactivator MAL/MRTF-A for SRF binding. Our findings identify an autoregulatory mechanism to selectively regulate subsets of RhoA-activated SRF target genes.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Musculares/genética , Proteínas de la Mielina/metabolismo , Proteolípidos/metabolismo , Factor de Respuesta Sérica/metabolismo , Factores de Transcripción/genética , Proteína de Unión al GTP rhoA/metabolismo , Animales , Cromatina/metabolismo , Perfilación de la Expresión Génica , Proteína Vmw65 de Virus del Herpes Simple/genética , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Ratones , Proteínas Musculares/metabolismo , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito , Células 3T3 NIH , Pruebas de Precipitina , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Respuesta Sérica/genética , Células Madre/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA