Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep Methods ; 2(9): 100297, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36160045

RESUMEN

Organoids are carrying the promise of modeling complex disease phenotypes and serving as a powerful basis for unbiased drug screens, potentially offering a more efficient drug-discovery route. However, unsolved technical bottlenecks of reproducibility and scalability have prevented the use of current organoids for high-throughput screening. Here, we present a method that overcomes these limitations by using deep-learning-driven analysis for phenotypic drug screens based on highly standardized micropattern-based neural organoids. This allows us to distinguish between disease and wild-type phenotypes in complex tissues with extremely high accuracy as well as quantify two predictors of drug success: efficacy and adverse effects. We applied our approach to Huntington's disease (HD) and discovered that bromodomain inhibitors revert complex phenotypes induced by the HD mutation. This work demonstrates the power of combining machine learning with phenotypic drug screening and its successful application to reveal a potentially new druggable target for HD.


Asunto(s)
Aprendizaje Profundo , Enfermedad de Huntington , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento , Evaluación Preclínica de Medicamentos , Reproducibilidad de los Resultados , Organoides
2.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34608934

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG repeats in the huntingtin gene (HTT). Although HD has been shown to have a developmental component, how early during human embryogenesis the HTT-CAG expansion can cause embryonic defects remains unknown. Here, we demonstrate a specific and highly reproducible CAG length-dependent phenotypic signature in a synthetic model for human gastrulation derived from human embryonic stem cells (hESCs). Specifically, we observed a reduction in the extension of the ectodermal compartment that is associated with enhanced activin signaling. Surprisingly, rather than a cell-autonomous effect, tracking the dynamics of TGFß signaling demonstrated that HTT-CAG expansion perturbs the spatial restriction of activin response. This is due to defects in the apicobasal polarization in the context of the polarized epithelium of the 2D gastruloid, leading to ectopic subcellular localization of TGFß receptors. This work refines the earliest developmental window for the prodromal phase of HD to the first 2 weeks of human development, as modeled by our 2D gastruloids.


Asunto(s)
Linaje de la Célula , Polaridad Celular , Estratos Germinativos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Proteína Huntingtina/metabolismo , Activinas/metabolismo , Animales , Línea Celular , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/embriología , Células Madre Embrionarias Humanas/citología , Humanos , Proteína Huntingtina/genética , Ratones , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Expansión de Repetición de Trinucleótido
3.
Development ; 145(2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29378824

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disease caused by expansion of CAG repeats in the Huntingtin gene (HTT). Neither its pathogenic mechanisms nor the normal functions of HTT are well understood. To model HD in humans, we engineered a genetic allelic series of isogenic human embryonic stem cell (hESC) lines with graded increases in CAG repeat length. Neural differentiation of these lines unveiled a novel developmental HD phenotype: the appearance of giant multinucleated telencephalic neurons at an abundance directly proportional to CAG repeat length, generated by a chromosomal instability and failed cytokinesis over multiple rounds of DNA replication. We conclude that disrupted neurogenesis during development is an important, unrecognized aspect of HD pathogenesis. To address the function of normal HTT protein we generated HTT+/- and HTT-/- lines. Surprisingly, the same phenotype emerged in HTT-/- but not HTT+/- lines. We conclude that HD is a developmental disorder characterized by chromosomal instability that impairs neurogenesis, and that HD represents a genetic dominant-negative loss of function, contrary to the prevalent gain-of-toxic-function hypothesis. The consequences of developmental alterations should be considered as a new target for HD therapies.


Asunto(s)
Inestabilidad Cromosómica , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Neurogénesis/genética , Alelos , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Humanos , Proteína Huntingtina/deficiencia , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/etiología , Enfermedad de Huntington/patología , Modelos Biológicos , Fenotipo , Huso Acromático/patología , Expansión de Repetición de Trinucleótido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA