Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39269064

RESUMEN

The exceptional properties of high-grade graphene make it an ideal candidate for thermal dissipation and heat exchange in energy applications and nanofluid development. Here, we present a comprehensive study of few-layer graphene (FLG) nanofluids prepared in an industrial context. FLG nanofluids were synthesized through an ultrasound-assisted mechanical exfoliation process of graphite in water with a green solvent. This method produces FLG of high structural quality and stable nanofluids, as demonstrated by electron microscope, dynamic light scattering and ζeta potential analyses. Thermal conductivity measurements of FLG-based nanofluids were conducted in the temperature range of 283.15 K to 313.15 K, with FLG concentrations ranging from 0.005 to 0.200% in wt. The thermal conductivity of FLG nanofluids is up to 20% higher than water. The modeling of nanofluid thermal conductivity reveals that this enhancement is supported by the influence of the thermal resistance at the FLG interface, and the content, average dimensions and flatness of FLG sheets; this latter varying with the FLG concentration in the nanofluid. Additionally, the density and heat capacity of FLG suspensions were measured and compared with theoretical models, and the rheological behavior of FLG nanofluids was evaluated. This behavior is mainly Newtonian, with a weak 5% viscosity increase.

2.
ACS Omega ; 7(14): 12365-12373, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35449941

RESUMEN

This article provides a numerical study on carbon nanotube-water nanofluid convection in a three-dimensional cavity under a magnetic field effect. Two walls are kept at a hot temperature, and the upper and lower horizontal walls are considered adiabatic. As a new configuration, the beneficial effect of using a nanofluid is coupled with the incorporation of cold V-shape obstacle placed in the cubic cavity; in addition, an external magnetic field is applied toward the horizontal x-axis direction. The finite element method based on the Galerkin's Weighted Residual technique is used to solve the three-dimensional governing equations. In this paper, the ranges of the parameters used are the Hartmann number, varied from 0 to 100, Rayleigh number from 103 to 105, nanofluid volume fraction between 0% and 4.5%, and the body V-shaped opening angle varied from 0 to 80°. The effect of the obstacle shape and the added nanoparticle concentration on the flow behaviors, the different instabilities generated, and the heat transfer exchanged were exposed. An enhancement in heat transfer was recorded by increasing the obstacle opening angle and the volume fraction of the carbon nanotubes. Special attention has also been devoted to the calculation of the different kinds of entropy generations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA