RESUMEN
MAIN CONCLUSIONS: In contrast to Neltuma species, S. tamarugo exhibited higher stress tolerance, maintaining photosynthetic performance through enhanced gene expression and metabolites. Differentially accumulated metabolites include chlorophyll and carotenoids and accumulation of non-nitrogen osmoprotectants. Plant species have developed different adaptive strategies to live under extreme environmental conditions. Hypothetically, extremophyte species present a unique configuration of physiological functions that prioritize stress-tolerance mechanisms while carefully managing resource allocation for photosynthesis. This could be particularly challenging under a multi-stress environment, where the synthesis of multiple and sequential molecular mechanisms is induced. We explored this hypothesis in three phylogenetically related woody species co-occurring in the Atacama Desert, Strombocarpa tamarugo, Neltuma alba, and Neltuma chilensis, by analyzing their leaf dehydration and freezing tolerance and by characterizing their photosynthetic performance under natural growth conditions. Besides, the transcriptomic profiling, biochemical analyses of leaf pigments, and metabolite analysis by untargeted metabolomics were conducted to study gene expression and metabolomic landscape within this challenging multi-stress environment. S. tamarugo showed a higher photosynthetic capacity and leaf stress tolerance than the other species. In this species, a multifactorial response was observed, which involves high photochemical activity associated with a higher content of chlorophylls and ß-carotene. The oxidative damage of the photosynthetic apparatus is probably attenuated by the synthesis of complex antioxidant molecules in the three species, but S. tamarugo showed the highest antioxidant capacity. Comparative transcriptomic and metabolomic analyses among the species showed the differential expression of genes involved in the biosynthetic pathways of key stress-related metabolites. Moreover, the synthesis of non-nitrogen osmoprotectant molecules, such as ciceritol and mannitol in S. tamarugo, would allow the nitrogen allocation to support its high photosynthetic capacity without compromising leaf dehydration tolerance and freezing stress avoidance.
Asunto(s)
Clima Desértico , Fotosíntesis , Estrés Fisiológico , Transcriptoma , Fotosíntesis/genética , Estrés Fisiológico/genética , Clorofila/metabolismo , Metabolómica , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Carotenoides/metabolismo , Metaboloma/genética , ChileRESUMEN
Recent results suggest that metabolism-mediated stomatal closure mechanisms are important to regulate differentially the stomatal speediness between ferns and angiosperms. However, evidence directly linking mesophyll metabolism and the slower stomatal conductance (gs ) in ferns is missing. Here, we investigated the effect of exogenous application of abscisic acid (ABA), sucrose and mannitol on stomatal kinetics and carried out a metabolic fingerprinting analysis of ferns and angiosperms leaves harvested throughout a diel course. Fern stomata did not respond to ABA in the time period analysed. No differences in the relative decrease in gs was observed between ferns and the angiosperm following provision of sucrose or mannitol. However, ferns have slower gs responses to these compounds than angiosperms. Metabolomics analysis highlights that ferns have a higher accumulation of secondary rather than primary metabolites throughout the diel course, with the opposite being observed in angiosperms. Our results indicate that metabolism-mediated stomatal closure mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms, in which the slower stomatal closure in ferns is associated with the lack of ABA-responsiveness, to a reduced capacity to respond to mesophyll-derived sucrose and to a higher carbon allocation toward secondary metabolism, which likely modulates both photosynthesis-gs and growth-stress tolerance trade-offs.
Asunto(s)
Ácido Abscísico/farmacología , Helechos/fisiología , Magnoliopsida/fisiología , Manitol/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/fisiología , Sacarosa/farmacología , Helechos/metabolismo , Cinética , Magnoliopsida/metabolismoRESUMEN
The alternative oxidase pathway (AOP) is associated with excess energy dissipation in leaves of terrestrial plants. To address whether this association is less important in palustrine plants, we compared the role of AOP in balancing energy and carbon metabolism in palustrine and terrestrial environments by identifying metabolic relationships between primary carbon metabolites and AOP in each habitat. We measured oxygen isotope discrimination during respiration, gas exchange, and metabolite profiles in aerial leaves of ten fern and angiosperm species belonging to five families organized as pairs of palustrine and terrestrial species. We performed a partial least square model combined with variable importance for projection to reveal relationships between the electron partitioning to the AOP (τa) and metabolite levels. Terrestrial plants showed higher values of net photosynthesis (AN) and τa, together with stronger metabolic relationships between τa and sugars, important for water conservation. Palustrine plants showed relationships between τa and metabolites related to the shikimate pathway and the GABA shunt, to be important for heterophylly. Excess energy dissipation via AOX is less crucial in palustrine environments than on land. The basis of this difference resides in the contrasting photosynthetic performance observed in each environment, thus reinforcing the importance of AOP for photosynthesis.
RESUMEN
Enhanced photosynthesis is strictly associated with to productivity and it can be accomplished by genetic approaches through identification of genetic variation. By using a Solanum pennellii introgression lines (ILs) population, it was previously verified that, under normal (CO2), IL 2-5 and 2-6 display increased photosynthetic rates by up to 20% in comparison with their parental background (M82). However, the physiological mechanisms involved in the enhanced CO2 assimilation exhibited by these lines remained unknown, precluding their use for further biotechnological applications. Thereby, here we attempted to uncover the physiological factors involved in the upregulation of photosynthesis in ILs 2-5 and 2-6 under normal (CO2) as well as under elevated (CO2). The results provide evidence for increased biochemical capacity (higher maximum carboxylation velocity and maximum electron transport rate) in plants from IL 2-5 and 2-6, whereas the diffusive components (stomatal and mesophyll conductances) were unaltered in these ILs in comparison to M82. Our analyses revealed that the higher photosynthetic rate observed in these ILs was associated with higher levels of starch as well as total protein levels, specially increased RuBisCO content. Further analyses performed in plants under high (CO2) confirmed that biochemical properties are involved in genetic variation on chromosome 2 related to enhanced photosynthesis.
RESUMEN
Stomatal responses to environmental signals differ substantially between ferns and angiosperms. However, the mechanisms that lead to such different responses remain unclear. Here we investigated the extent to which leaf metabolism contributes to coordinate the differential stomatal behaviour among ferns and angiosperms. Stomata from all species were responsive to light and CO2 transitions. However, fern stomatal responses were slower and minor in both absolute and relative terms. Angiosperms have higher stomatal density, but this is not correlated with speed of stomatal closure. The metabolic responses throughout the diel course and under different CO2 conditions differ substantially among ferns and angiosperms. Higher sucrose content and an increased sucrose-to-malate ratio during high CO2 -induced stomatal closure was observed in angiosperms compared to ferns. Furthermore, the speed of stomatal closure was positively and negatively correlated with sugars and organic acids, respectively, suggesting that the balance between sugars and organic acids aids in explaining the faster stomatal responses of angiosperms. Our results suggest that mesophyll-derived metabolic signals, especially those associated with sucrose and malate, may also be important to modulate the differential stomatal behaviour between ferns and angiosperms, providing important new information that helps in understanding the metabolism-mediated mechanisms regulating stomatal movements across land plant evolution.
Asunto(s)
Dióxido de Carbono/metabolismo , Helechos/fisiología , Luz , Magnoliopsida/fisiología , Malatos/metabolismo , Estomas de Plantas/metabolismo , Estomas de Plantas/efectos de la radiación , Sacarosa/metabolismo , Análisis Discriminante , Helechos/efectos de la radiación , Análisis de los Mínimos Cuadrados , Magnoliopsida/efectos de la radiación , Metaboloma/efectos de la radiación , Fotosíntesis/efectos de la radiación , Análisis de Componente PrincipalRESUMEN
Thiol-disulfide redox exchanges are widely distributed modifications of great importance for metabolic regulation in living cells. In general, the formation of disulfide bonds is controlled by thioredoxins (TRXs), ubiquitous proteins with two redox-active cysteine residues separated by a pair of amino acids. While the function of plastidial TRXs has been extensively studied, the role of the mitochondrial TRX system is much less well understood. Recent studies have demonstrated that the mitochondrial TRXs are required for the proper functioning of the major metabolic pathways, including stomatal function and antioxidant metabolism under sub-optimal conditions including drought and salinity. Furthermore, inactivation of mitochondrial TRX system leads to metabolite adjustments of both primary and secondary metabolism following drought episodes in arabidopsis, and makes the plants more resistant to salt stress. Here we discuss the implications of these findings, which clearly open up several research avenues to achieve a full understanding of the redox control of metabolism under environmental constraining conditions.
Asunto(s)
Arabidopsis/fisiología , Mitocondrias/metabolismo , Estrés Fisiológico , Tiorredoxinas/metabolismo , Arabidopsis/enzimología , Transporte de Electrón , Modelos Biológicos , Oxidación-Reducción , Fotosíntesis , Estomas de Plantas/fisiología , Superóxido Dismutasa/metabolismoRESUMEN
Eucryphia cordifolia Cav. is a long-lived evergreen tree species, commonly found as a canopy emergent tree in the Chilean temperate rain forest. This species displays successive leaf cohorts throughout the entire growing season. Thus, full leaf expansion occurs under different environmental conditions during growing such as air temperature, vapor pressure deficit and the progress of moderate water stress (WS). These climate variations can be reflected as differences in anatomical and physiological characteristics among leaf cohorts. Thus, we investigated the potential adaptive role of different co-existing leaf cohorts in seedlings grown under shade, drought stress or a combination of the two. Photosynthetic and anatomical traits were measured in the first displayed leaf cohort and in a subsequent leaf cohort generated during the mid-season. Although most anatomical and photosynthetic pigments did not vary between cohorts, photosynthetic acclimation did occur in the leaf cohort and was mainly driven by biochemical processes such as leaf nitrogen content, Rubisco carboxylation capacity and maximal Photosystem II electron transport rather than CO2 diffusion conductance. Cohort acclimation could be relevant in the context of climate change, as this temperate rainforest will likely face some degree of summer WS even under low light conditions. We suggest that the acclimation of the photosynthetic capacity among current leaf cohorts represents a well-tuned mechanism helping E.â cordifolia seedlings to face a single stress like shade or drought stress, but is insufficient to cope with simultaneous stresses.
Asunto(s)
Aclimatación , Clima , Sequías , Luz , Magnoliopsida/fisiología , Hojas de la Planta/fisiología , Agua , Chile , Cambio Climático , Oscuridad , Magnoliopsida/crecimiento & desarrollo , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Estrés Fisiológico , Árboles/crecimiento & desarrollo , Árboles/fisiologíaRESUMEN
Se presenta un modelo de jeringa que permite obtener microespuma en forma rápida y repetible. el procedimiento resulta económico y la calidad de la espuma obtenida es buena, permaneciento estable "in vitro" durante 7 minutos sin alterarse
Asunto(s)
Jeringas , Diseño de Equipo , Soluciones Esclerosantes , EsclerosisRESUMEN
Se presenta un modelo de jeringa que permite obtener microespuma en forma rápida y repetible. el procedimiento resulta económico y la calidad de la espuma obtenida es buena, permaneciento estable "in vitro" durante 7 minutos sin alterarse