Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 9(7): 3857-3867, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35518099

RESUMEN

Conductive biomolecular systems are investigated for their promise of new technologies. One biomolecular material that has garnered interest for device applications is eumelanin. Its unusual properties have led to its incorporation in a wide set of platforms including transistor devices and batteries. Much of eumelanin's conductive properties are due to a solid state redox comproportionation reaction. However, most of the work that has been done to demonstrate the role of the redox chemistry in eumelanin has been via control of eumelanin's hydration content with scant attention given to temperature dependent behavior. Here we demonstrate for the first time consistency between hydration and temperature effects for the comproportionation conductivity model utilizing dielectric spectroscopy, heat capacity measurements, frequency scaling phenomena and recognizing that activation energies in the range of ∼0.5 eV correspond to proton dissociation events. Our results demonstrate that biomolecular conductivity models should account for temperature and hydration effects coherently.

2.
J Biol Phys ; 44(3): 401-417, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29732506

RESUMEN

Employing optical spectroscopy we have performed a comparative study of the dielectric response of extracellular matrix and filaments of electrogenic bacteria Shewanella oneidensis MR-1, cytochrome c, and bovine serum albumin. Combining infrared transmission measurements on thin layers with data of the terahertz spectra, we obtain the dielectric permittivity and AC conductivity spectra of the materials in a broad frequency band from a few cm-1 up to 7000 cm-1 in the temperature range from 5 to 300 K. Strong absorption bands are observed in the three materials that cover the range from 10 to 300 cm-1 and mainly determine the terahertz absorption. When cooled down to liquid helium temperatures, the bands in Shewanella oneidensis MR-1 and cytochrome c reveal a distinct fine structure. In all three materials, we identify the presence of liquid bound water in the form of librational and translational absorption bands at ≈ 200 and ≈ 600 cm-1, respectively. The sharp excitations seen above 1000 cm-1 are assigned to intramolecular vibrations.


Asunto(s)
Citocromos c/química , Matriz Extracelular/química , Shewanella/química , Espectroscopía de Terahertz/métodos , Agua/química , Animales , Bovinos , Albúmina Sérica Bovina/química
3.
Sci Rep ; 7(1): 15731, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29147016

RESUMEN

The electrodynamics of metals is well understood within the Drude conductivity model; properties of insulators and semiconductors are governed by a gap in the electronic states. But there is a great variety of disordered materials that do not fall in these categories and still respond to external field in an amazingly uniform manner. At radiofrequencies delocalized charges yield a frequency-independent conductivity σ 1(ν) whose magnitude exponentially decreases while cooling. With increasing frequency, dispersionless conductivity starts to reveal a power-law dependence σ 1(ν)∝ν s with s < 1 caused by hopping charge carriers. At low temperatures, such Universal Dielectric Response can cross over to another universal regime with nearly constant loss ε″∝σ1/ν = const. The powerful research potential based on such universalities is widely used in condensed matter physics. Here we study the broad-band (1-1012 Hz) dielectric response of Shewanella oneidensis MR-1 extracellular matrix, cytochrome C and serum albumin. Applying concepts of condensed matter physics, we identify transport mechanisms and a number of energy, time, frequency, spatial and temperature scales in these biological objects, which can provide us with deeper insight into the protein dynamics.


Asunto(s)
Albúminas/metabolismo , Citocromos c/metabolismo , Electricidad , Matriz Extracelular/metabolismo , Shewanella/metabolismo , Animales , Bovinos , Conductividad Eléctrica , Análisis Espectral , Temperatura , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA