Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 382(2281): 20240059, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39246074

RESUMEN

Four-dimensional (4D) constellations with up to 131 072 points (17 bit/4D-sym) are designed for the first time using geometric shaping. The constellations are optimized in terms of mutual information (MI) and generalized MI (GMI) for the additive white Gaussian noise (AWGN) channel, targeting a forward error correction (FEC) rate of 0.8 at finite signal-to-noise ratios. The presented 15-17 bit constellations are currently the highest-performing constellations in the literature, having a gap to the AWGN capacity as low as 0.17 dB (MI) and 0.45 dB (GMI) at 17 bit/4D-sym. For lower cardinalities, our constellations match or closely approach the performance of previously published optimized constellations. We also show that (GMI-)optimized constellations with a symmetry constraint, optimized for a FEC rate of 0.8, perform nearly identical to their unconstrained counterparts for cardinalities above 8 bit/4D-sym. A symmetry constraint for MI-optimized constellations is shown to have a negative impact in general. The proposed procedure relies on a Monte-Carlo-based approach for evaluating performance and is extendable to other (nonlinear) channels. Stochastic gradient descent is used for the optimization algorithm for which the gradients are computed using automatic differentiation. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.

2.
Entropy (Basel) ; 22(5)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33286353

RESUMEN

In this paper, we provide a systematic comparison of distribution matching (DM) and sphere shaping (SpSh) algorithms for short blocklength probabilistic amplitude shaping. For asymptotically large blocklengths, constant composition distribution matching (CCDM) is known to generate the target capacity-achieving distribution. However, as the blocklength decreases, the resulting rate loss diminishes the efficiency of CCDM. We claim that for such short blocklengths over the additive white Gaussian noise (AWGN) channel, the objective of shaping should be reformulated as obtaining the most energy-efficient signal space for a given rate (rather than matching distributions). In light of this interpretation, multiset-partition DM (MPDM) and SpSh are reviewed as energy-efficient shaping techniques. Numerical results show that both have smaller rate losses than CCDM. SpSh-whose sole objective is to maximize the energy efficiency-is shown to have the minimum rate loss amongst all, which is particularly apparent for ultra short blocklengths. We provide simulation results of the end-to-end decoding performance showing that up to 1 dB improvement in power efficiency over uniform signaling can be obtained with MPDM and SpSh at blocklengths around 200. Finally, we present a discussion on the complexity of these algorithms from the perspectives of latency, storage and computations.

3.
Entropy (Basel) ; 22(7)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-33286534

RESUMEN

Probabilistic amplitude shaping (PAS) is a coded modulation strategy in which constellation shaping and channel coding are combined. PAS has attracted considerable attention in both wireless and optical communications. Achievable information rates (AIRs) of PAS have been investigated in the literature using Gallager's error exponent approach. In particular, it has been shown that PAS achieves the capacity of the additive white Gaussian noise channel (Böcherer, 2018). In this work, we revisit the capacity-achieving property of PAS and derive AIRs using weak typicality. Our objective is to provide alternative proofs based on random sign-coding arguments that are as constructive as possible. Accordingly, in our proofs, only some signs of the channel inputs are drawn from a random code, while the remaining signs and amplitudes are produced constructively. We consider both symbol-metric and bit-metric decoding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA