Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(10): 5502-5509, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32098843

RESUMEN

The habenula, an ancient small brain area in the epithalamus, densely expresses nicotinic acetylcholine receptors and is critical for nicotine intake and aversion. As such, identification of strategies to manipulate habenular activity may yield approaches to treat nicotine addiction. Here we show that GPR151, an orphan G-protein-coupled receptor (GPCR) highly enriched in the habenula of humans and rodents, is expressed at presynaptic membranes and synaptic vesicles and associates with synaptic components controlling vesicle release and ion transport. Deletion of Gpr151 inhibits evoked neurotransmission but enhances spontaneous miniature synaptic currents and eliminates short-term plasticity induced by nicotine. We find that GPR151 couples to the G-alpha inhibitory protein Gαo1 to reduce cyclic adenosine monophosphate (cAMP) levels in mice and in GPR151-expressing cell lines that are amenable to ligand screens. Gpr151- knockout (KO) mice show diminished behavioral responses to nicotine and self-administer greater quantities of the drug, phenotypes rescued by viral reexpression of Gpr151 in the habenula. These data identify GPR151 as a critical modulator of habenular function that controls nicotine addiction vulnerability.


Asunto(s)
Habénula/fisiología , Plasticidad Neuronal/fisiología , Nicotina/metabolismo , Agonistas Nicotínicos/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Trastornos Relacionados con Sustancias/metabolismo , Animales , Células CHO , Cricetulus , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Habénula/metabolismo , Humanos , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Receptores Acoplados a Proteínas G/genética , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
2.
Proc Natl Acad Sci U S A ; 114(49): 13012-13017, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158387

RESUMEN

Repeated exposure to drugs of abuse can produce adaptive changes that lead to the establishment of dependence. It has been shown that allelic variation in the α5 nicotinic acetylcholine receptor (nAChR) gene CHRNA5 is associated with higher risk of tobacco dependence. In the brain, α5-containing nAChRs are expressed at very high levels in the interpeduncular nucleus (IPN). Here we identified two nonoverlapping α5 + cell populations (α5- Amigo1 and α5- Epyc ) in mouse IPN that respond differentially to nicotine. Chronic nicotine treatment altered the translational profile of more than 1,000 genes in α5- Amigo1 neurons, including neuronal nitric oxide synthase (Nos1) and somatostatin (Sst). In contrast, expression of few genes was altered in the α5- Epyc population. We show that both nitric oxide and SST suppress optically evoked neurotransmitter release from the terminals of habenular (Hb) neurons in IPN. Moreover, in vivo silencing of neurotransmitter release from the α5- Amigo1 but not from the α5- Epyc population eliminates nicotine reward, measured using place preference. This loss of nicotine reward was mimicked by shRNA-mediated knockdown of Nos1 in the IPN. These findings reveal a proaddiction adaptive response to chronic nicotine in which nitric oxide and SST are released by a specific α5+ neuronal population to provide retrograde inhibition of the Hb-IPN circuit and thereby enhance the motivational properties of nicotine.


Asunto(s)
Núcleo Interpeduncular/efectos de los fármacos , Nicotina/farmacología , Óxido Nítrico Sintasa de Tipo I/genética , Receptores Nicotínicos/genética , Somatostatina/genética , Tabaquismo/genética , Animales , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Habénula/efectos de los fármacos , Habénula/metabolismo , Habénula/patología , Núcleo Interpeduncular/metabolismo , Núcleo Interpeduncular/patología , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neurotransmisores/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/metabolismo , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Nicotínicos/metabolismo , Recompensa , Somatostatina/metabolismo , Técnicas Estereotáxicas , Transmisión Sináptica , Tabaquismo/metabolismo , Tabaquismo/patología
3.
Sci Rep ; 6: 25652, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27734846

RESUMEN

The FE65 adaptor proteins (FE65, FE65L1 and FE65L2) bind proteins that function in diverse cellular pathways and are essential for specific biological processes. Mice lacking both FE65 and FE65L1 exhibit ectopic neuronal positioning in the cortex and muscle weakness. p97FE65-KO mice, expressing a shorter FE65 isoform able to bind amyloid precursor protein family members (APP, APLP1, APLP2), develop defective long-term potentiation (LTP) and aged mice display spatial learning and memory deficits that are absent from young mice. Here, we examined the central and peripheral nervous systems of FE65-KO, FE65L1-KO and FE65/FE65L1-DKO mice. We find spatial learning and memory deficits in FE65-KO and FE65L1-KO mice. Severe motor impairments, anxiety, hippocampal LTP deficits and neuromuscular junction (NMJ) abnormalities, characterized by decreased size and reduced apposition of pre- and postsynaptic sites, are observed in FE65/FE65L1-DKO mice. As their NMJ deficits resemble those of mutant APP/APLP2-DKO mice lacking the FE65/FE65L1 binding site, the NMJs of APLP2/FE65-DKO and APLP2/FE65L1-DKO mice were analyzed. NMJ deficits are aggravated in these mice when compared to single FE65- and FE65L1-KO mice. Together, our data demonstrate a role for FE65 proteins at central and peripheral synapses possibly occurring downstream of cell surface-associated APP/APLPs.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Portadoras/metabolismo , Epistasis Genética , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Proteínas Nucleares/metabolismo , Sinapsis/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Ansiedad , Espinas Dendríticas/metabolismo , Genotipo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Aprendizaje , Potenciación a Largo Plazo , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Actividad Motora , Unión Neuromuscular/fisiopatología , Células Piramidales/metabolismo
4.
Elife ; 4: e11396, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26623516

RESUMEN

A great deal of interest has been focused recently on the habenula and its critical role in aversion, negative-reward and drug dependence. Using a conditional mouse model of the ACh-synthesizing enzyme choline acetyltransferase (Chat), we report that local elimination of acetylcholine (ACh) in medial habenula (MHb) neurons alters glutamate corelease and presynaptic facilitation. Electron microscopy and immuno-isolation analyses revealed colocalization of ACh and glutamate vesicular transporters in synaptic vesicles (SVs) in the central IPN. Glutamate reuptake in SVs prepared from the IPN was increased by ACh, indicating vesicular synergy. Mice lacking CHAT in habenular neurons were insensitive to nicotine-conditioned reward and withdrawal. These data demonstrate that ACh controls the quantal size and release frequency of glutamate at habenular synapses, and suggest that the synergistic functions of ACh and glutamate may be generally important for modulation of cholinergic circuit function and behavior.


Asunto(s)
Acetilcolina/metabolismo , Neuronas Colinérgicas/fisiología , Ácido Glutámico/metabolismo , Habénula/fisiología , Sinapsis/efectos de los fármacos , Tabaquismo , Animales , Condicionamiento Clásico , Ratones
5.
Neuropharmacology ; 96(Pt B): 213-22, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25476971

RESUMEN

Progress has been made over the last decade in our understanding of the brain areas and circuits involved in nicotine reward and withdrawal, leading to models of addiction that assign different addictive behaviors to distinct, yet overlapping, neural circuits (Koob and Volkow, 2010; Lobo and Nestler, 2011; Tuesta et al., 2011; Volkow et al., 2011). Recently the habenulo-interpeduncular (Hb-IPN) midbrain pathway has re-emerged as a new critical crossroad that influences the brain response to nicotine. This brain area is particularly enriched in nicotinic acetylcholine receptor (nAChR) subunits α5, α3 and ß4 encoded by the CHRNA5-A3-B4 gene cluster, which has been associated with vulnerability to tobacco dependence in human genetics studies. This finding, together with studies in mice involving deletion and replacement of nAChR subunits, and investigations of the circuitry, cell types and electrophysiological properties, have begun to identify the molecular mechanisms that take place in the MHb-IPN which underlie critical aspects of nicotine dependence. In the current review we describe the anatomical and functional connections of the MHb-IPN system, as well as the contribution of specific nAChRs subtypes in nicotine-mediated behaviors. Finally, we discuss the specific electrophysiological properties of MHb-IPN neuronal populations and how nicotine exposure alters their cellular physiology, highlighting the unique role of the MHb-IPN in the context of nicotine aversion and withdrawal. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.


Asunto(s)
Habénula/metabolismo , Núcleo Interpeduncular/metabolismo , Neuronas/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Animales , Habénula/citología , Habénula/efectos de los fármacos , Humanos , Núcleo Interpeduncular/citología , Núcleo Interpeduncular/efectos de los fármacos , Ratones , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/fisiopatología , Tabaquismo/complicaciones
6.
Biol Psychiatry ; 78(2): 95-106, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24768258

RESUMEN

BACKGROUND: Actin depolymerizing proteins of the actin depolymerizing factor (ADF)/cofilin family are essential for actin dynamics, which is critical for synaptic function. Two ADF/cofilin family members, ADF and n-cofilin, are highly abundant in the brain, where they are present in excitatory synapses. Previous studies demonstrated the relevance of n-cofilin for postsynaptic plasticity, associative learning, and anxiety. These studies also suggested overlapping functions for ADF and n-cofilin. METHODS: We performed pharmacobehavioral, electrophysiologic, and electron microscopic studies on ADF and n-cofilin single mutants and double mutants (named ACC mice) to characterize the importance of ADF/cofilin activity for synapse physiology and mouse behavior. RESULTS: The ACC mice, but not single mutants, exhibited hyperlocomotion, impulsivity, and impaired working memory. Hyperlocomotion and impulsive behavior were reversed by methylphenidate, a psychostimulant commonly used for the treatment of attention-deficit/hyperactivity disorder (ADHD). Also, ACC mice displayed a disturbed morphology of striatal excitatory synapses, accompanied by strongly increased glutamate release. Blockade of dopamine or glutamate transmission resulted in normal locomotion. CONCLUSIONS: Our study reveals that ADHD can result from a disturbed balance between excitation and inhibition in striatal circuits, providing novel insights into the mechanisms underlying this neurobehavioral disorder. Our results link actin dynamics to ADHD, suggesting that mutations in actin regulatory proteins may contribute to the etiology of ADHD in humans.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/psicología , Cofilina 1/fisiología , Cuerpo Estriado/ultraestructura , Destrina/fisiología , Animales , Trastorno por Déficit de Atención con Hiperactividad/genética , Estimulantes del Sistema Nervioso Central/farmacología , Cofilina 1/genética , Cofilina 1/metabolismo , Destrina/genética , Modelos Animales de Enfermedad , Antagonistas de Dopamina , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Potenciales Postsinápticos Excitadores , Glutamatos/metabolismo , Conducta Impulsiva/efectos de los fármacos , Conducta Impulsiva/fisiología , Masculino , Memoria a Corto Plazo/fisiología , Metilfenidato/farmacología , Ratones , Ratones Noqueados , Actividad Motora/genética , Comportamiento de Nidificación , Neuronas/metabolismo , Neuronas/ultraestructura , Fenotipo , Receptores Dopaminérgicos/fisiología , Sustancia Negra/metabolismo , Sinapsis/ultraestructura
7.
Cereb Cortex ; 25(9): 2863-75, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24770705

RESUMEN

Actin is a regulator of synaptic vesicle mobilization and exocytosis, but little is known about the mechanisms that regulate actin at presynaptic terminals. Genetic data on LIMK1, a negative regulator of actin-depolymerizing proteins of the ADF/cofilin family, suggest a role for ADF/cofilin in presynaptic function. However, synapse physiology is fully preserved upon genetic ablation of ADF in mice, and n-cofilin mutant mice display defects in postsynaptic plasticity, but not in presynaptic function. One explanation for this phenomenon is overlapping functions of ADF and n-cofilin in presynaptic physiology. Here, we tested this hypothesis and genetically removed ADF together with n-cofilin from synapses. In double mutants for ADF and n-cofilin, synaptic actin dynamics was impaired and more severely affected than in single mutants. The resulting cytoskeletal defects heavily affected the organization, mobilization, and exocytosis of synaptic vesicles in hippocampal CA3-CA1 synapses. Our data for the first time identify overlapping functions for ADF and n-cofilin in presynaptic physiology and vesicle trafficking. We conclude that n-cofilin is a limiting factor in postsynaptic plasticity, a function which cannot be substituted by ADF. On the presynaptic side, the presence of either ADF or n-cofilin is sufficient to control actin remodeling during vesicle release.


Asunto(s)
Actinas/metabolismo , Cofilina 1/metabolismo , Destrina/metabolismo , Exocitosis/fisiología , Transporte de Proteínas/fisiología , Sinapsis/fisiología , Vesículas Sinápticas/metabolismo , Animales , Cofilina 1/genética , Destrina/genética , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Exocitosis/efectos de los fármacos , Exocitosis/genética , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/ultraestructura , Fosforilación , Cloruro de Potasio/farmacología , Prosencéfalo/citología , Transporte de Proteínas/genética , Proteínas SNARE/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura
8.
Cell ; 159(2): 295-305, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25303526

RESUMEN

Human imaging studies have revealed that intranasal administration of the "prosocial" hormone oxytocin (OT) activates the frontal cortex, and this action of OT correlates with enhanced brain function in autism. Here, we report the discovery of a population of somatostatin (Sst)-positive, regular spiking interneurons that express the oxytocin receptor (OxtrINs). Silencing of OxtrINs in the medial prefrontal cortex (mPFC) of female mice resulted in loss of social interest in male mice specifically during the sexually receptive phase of the estrous cycle. This sociosexual deficit was also present in mice in which the Oxtr gene was conditionally deleted from the mPFC and in control mice infused with an Oxtr antagonist. Our data demonstrate a gender-, cell type-, and state-specific role for OT/Oxtr signaling in the mPFC and identify a latent cortical circuit element that may modulate other complex social behaviors in response to OT.


Asunto(s)
Interneuronas/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Oxitocina/metabolismo , Conducta Sexual Animal , Animales , Ciclo Estral , Femenino , Masculino , Ratones , Oxitocina/metabolismo , Corteza Prefrontal/citología , Caracteres Sexuales , Conducta Social
9.
Proc Natl Acad Sci U S A ; 110(42): 17077-82, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082085

RESUMEN

The discovery of genetic variants in the cholinergic receptor nicotinic CHRNA5-CHRNA3-CHRNB4 gene cluster associated with heavy smoking and higher relapse risk has led to the identification of the midbrain habenula-interpeduncular axis as a critical relay circuit in the control of nicotine dependence. Although clear roles for α3, ß4, and α5 receptors in nicotine aversion and withdrawal have been established, the cellular and molecular mechanisms that participate in signaling nicotine use and contribute to relapse have not been identified. Here, using translating ribosome affinity purification (TRAP) profiling, electrophysiology, and behavior, we demonstrate that cholinergic neurons, but not peptidergic neurons, of the medial habenula (MHb) display spontaneous tonic firing of 2-10 Hz generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels and that infusion of the HCN pacemaker antagonist ZD7288 in the habenula precipitates somatic and affective signs of withdrawal. Further, we show that a strong, α3ß4-dependent increase in firing frequency is observed in these pacemaker neurons upon acute exposure to nicotine. No change in the basal or nicotine-induced firing was observed in cholinergic MHb neurons from mice chronically treated with nicotine. We observe, however, that, during withdrawal, reexposure to nicotine doubles the frequency of pacemaking activity in these neurons. These findings demonstrate that the pacemaking mechanism of cholinergic MHb neurons controls withdrawal, suggesting that the heightened nicotine sensitivity of these neurons during withdrawal may contribute to smoking relapse.


Asunto(s)
Relojes Biológicos/efectos de los fármacos , Neuronas Colinérgicas , Habénula , Nicotina/efectos adversos , Agonistas Nicotínicos/efectos adversos , Síndrome de Abstinencia a Sustancias , Animales , Cardiotónicos/farmacología , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Habénula/metabolismo , Habénula/patología , Habénula/fisiopatología , Humanos , Ratones , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Pirimidinas/farmacología , Fumar/metabolismo , Fumar/patología , Fumar/fisiopatología , Cese del Hábito de Fumar , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/patología , Síndrome de Abstinencia a Sustancias/fisiopatología
10.
PLoS One ; 7(1): e30068, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22253883

RESUMEN

Profilins are important regulators of actin dynamics and have been implicated in activity-dependent morphological changes of dendritic spines and synaptic plasticity. Recently, defective presynaptic excitability and neurotransmitter release of glutamatergic synapses were described for profilin2-deficient mice. Both dendritic spine morphology and synaptic plasticity were fully preserved in these mutants, bringing forward the hypothesis that profilin1 is mainly involved in postsynaptic mechanisms, complementary to the presynaptic role of profilin2. To test the hypothesis and to elucidate the synaptic function of profilin1, we here specifically deleted profilin1 in neurons of the adult forebrain by using conditional knockout mice on a CaMKII-cre-expressing background. Analysis of Golgi-stained hippocampal pyramidal cells and electron micrographs from the CA1 stratum radiatum revealed normal synapse density, spine morphology, and synapse ultrastructure in the absence of profilin1. Moreover, electrophysiological recordings showed that basal synaptic transmission, presynaptic physiology, as well as postsynaptic plasticity were unchanged in profilin1 mutants. Hence, loss of profilin1 had no adverse effects on the morphology and function of excitatory synapses. Our data are in agreement with two different scenarios: i) profilins are not relevant for actin regulation in postsynaptic structures, activity-dependent morphological changes of dendritic spines, and synaptic plasticity or ii) profilin1 and profilin2 have overlapping functions particularly in the postsynaptic compartment. Future analysis of double mutant mice will ultimately unravel whether profilins are relevant for dendritic spine morphology and synaptic plasticity.


Asunto(s)
Profilinas/deficiencia , Sinapsis/fisiología , Animales , Región CA1 Hipocampal/fisiología , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Eliminación de Gen , Ratones , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Especificidad de Órganos , Profilinas/metabolismo , Prosencéfalo/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura
11.
PLoS One ; 6(10): e26789, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22046357

RESUMEN

Actin plays important roles in a number of synaptic processes, including synaptic vesicle organization and exocytosis, mobility of postsynaptic receptors, and synaptic plasticity. However, little is known about the mechanisms that control actin at synapses. Actin dynamics crucially depend on LIM kinase 1 (LIMK1) that controls the activity of the actin depolymerizing proteins of the ADF/cofilin family. While analyses of mouse mutants revealed the importance of LIMK1 for both pre- and postsynaptic mechanisms, the ADF/cofilin family member n-cofilin appears to be relevant merely for postsynaptic plasticity, and not for presynaptic physiology. By means of immunogold electron microscopy and immunocytochemistry, we here demonstrate the presence of ADF (actin depolymerizing factor), a close homolog of n-cofilin, in excitatory synapses, where it is particularly enriched in presynaptic terminals. Surprisingly, genetic ablation of ADF in mice had no adverse effects on synapse structure or density as assessed by electron microscopy and by the morphological analysis of Golgi-stained hippocampal pyramidal cells. Moreover, a series of electrophysiological recordings in acute hippocampal slices revealed that presynaptic recruitment and exocytosis of synaptic vesicles as well as postsynaptic plasticity were unchanged in ADF mutant mice. The lack of synaptic defects may be explained by the elevated n-cofilin levels observed in synaptic structures of ADF mutants. Indeed, synaptic actin regulation was impaired in compound mutants lacking both ADF and n-cofilin, but not in ADF single mutants. From our results we conclude that n-cofilin can compensate for the loss of ADF in excitatory synapses. Further, our data suggest that ADF and n-cofilin cooperate in controlling synaptic actin content.


Asunto(s)
Cofilina 1/fisiología , Destrina/deficiencia , Terminales Presinápticos , Actinas/metabolismo , Animales , Cofilina 1/metabolismo , Destrina/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Inmunohistoquímica , Quinasas Lim , Ratones , Microscopía Electrónica , Células Piramidales/fisiología , Sinapsis
12.
EMBO J ; 29(11): 1889-902, 2010 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-20407421

RESUMEN

Neuronal plasticity is an important process for learning, memory and complex behaviour. Rapid remodelling of the actin cytoskeleton in the postsynaptic compartment is thought to have an important function for synaptic plasticity. However, the actin-binding proteins involved and the molecular mechanisms that in vivo link actin dynamics to postsynaptic physiology are not well understood. Here, we show that the actin filament depolymerizing protein n-cofilin is controlling dendritic spine morphology and postsynaptic parameters such as late long-term potentiation and long-term depression. Loss of n-cofilin-mediated synaptic actin dynamics in the forebrain specifically leads to impairment of all types of associative learning, whereas exploratory learning is not affected. We provide evidence for a novel function of n-cofilin function in synaptic plasticity and in the control of extrasynaptic excitatory AMPA receptors diffusion. These results suggest a critical function of actin dynamics in associative learning and postsynaptic receptor availability.


Asunto(s)
Actinas/fisiología , Cofilina 1/metabolismo , Aprendizaje , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Potenciación a Largo Plazo/fisiología , Memoria , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA