Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 345: 118794, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619385

RESUMEN

Landfill leachate is a discrete volumetric component of municipal solid waste; hence, researchers and professionals are more concerned about it because of its obscurity. Innovative treatment and emerging technologies are being scrutinized to address the treatment of landfill leachate challenges. The leading target of this review was to examine the possibility of removing recalcitrant organic pollutants from landfill leachate by photocatalytic-based advanced oxidation processes. A summary of the systematic applicability of conventional treatment for landfill leachate is provided, with a focus on physico-chemical and biological processes. The biological treatment, such as aerobic and anaerobic digestion, is an excellent technique for treating highly concentrated organic pollutants in the wastewater. However, Leachate can scarcely be treated using conventional techniques since it is enriched with refractory organics and inorganic ions. It is clear from the literature review that none of the available combinations of physico-chemical and biological treatments are entirely relevant for the removal of recalcitrant organic pollutants from leachate. Recently, the photo-assisted TiO2/ZnO oxidation has shown an excessively potential and feasible way to treat landfill leachate. TiO2/ZnO photocatalysis is currently developing to treat recalcitrant organic pollutants from landfill leachate. The effect of operating parameters reveals that pH and temperature affect the reaction rate. The addition of oxidant H2O2 to the TiO2/ZnO suspension suggests that TiO2 leads to an increase in the rate of reaction when compared to ZnO. Photocatalytic remediation technique of landfill leachate would support the goal of environmental sustainability by greatly enhancing the effectiveness of treated leachate reutilization. In this review, the selection of the best photocatalytic treatment for leachate based on its systematic relevance and potential conditions, characteristics, cost-effectiveness, essential controlling, discharge limit, long-term environmental effects, and its future study perspectives are emphasized and discussed.


Asunto(s)
Contaminantes Químicos del Agua , Óxido de Zinc , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Peróxido de Hidrógeno , Oxidación-Reducción
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 199: 465-471, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29153841

RESUMEN

To sense biologically important entities with different size and dimensions, a fluorenone based fluorescent receptor was designed and synthesized. Probe 1 displayed a distinct fluorescence enhancement emission at 565nm for pyrophosphate and 530nm for alanine in polar solvent. The fluorescence titration experiments confirm 1:1 stoichiometric ratio with high-binding constant and very low limit of detection (LoD) values. Receptor 1 showed a highly selective and sensitive recognition to HP2O73- and to alanine over other competitive anions and amino acids. In addition, the fluorescence lifetime measurement and reversible binding study results support the practical importance of 1.


Asunto(s)
Alanina/análisis , Difosfatos/análisis , Fluorescencia , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA