Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Soc Trans ; 33(Pt 5): 924-30, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16246012

RESUMEN

Reaction centres are membrane-embedded pigment-protein complexes that transduce the energy of sunlight into a biologically useful form. The most heavily studied reaction centres are the PS-I (Photosystem I) and PS-II complexes from oxygenic phototrophs, and the reaction centre from purple photosynthetic bacteria. A great deal is known about the compositions and structures of these reaction centres, and the mechanism of light-activated transmembrane electron transfer, but less is known about how they interact with other components of the photosynthetic membrane, including the membrane lipids. X-ray crystallography has provided high-resolution structures for PS-I and the purple bacterial reaction centre, and revealed binding sites for a number of lipids, either embedded in the protein interior or attached to the protein surface. These lipids play a variety of roles, including the binding of cofactors and the provision of structural support. The challenges of modelling surface-associated electron density features such as lipids, detergents, small amphiphiles and ions are discussed.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Cristalografía por Rayos X , Lípidos/química , Modelos Moleculares , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Conformación Proteica , Quinonas/química , Quinonas/metabolismo
2.
Curr Biol ; 11(8): R318-21, 2001 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-11369223

RESUMEN

In oxygenic photosynthesis, a highly oxidising chlorophyll species strips electrons out of two water molecules, generating molecular oxygen as a waste product. A recent study has provided new insights into the structure of the molecular machinery responsible for biological oxygen production.


Asunto(s)
Oxígeno/metabolismo , Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Cristalografía por Rayos X , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo
3.
Trends Biochem Sci ; 26(2): 106-12, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11166568

RESUMEN

Biological membranes are composed of a complex mixture of lipids and proteins, and the membrane lipids support several key biophysical functions, in addition to their obvious structural role. Recent results from X-ray crystallography are shedding new light on the precise molecular details of the protein-lipid interface.


Asunto(s)
Membrana Celular/química , Cristalografía por Rayos X/métodos , Lípidos/química , Bacteriorodopsinas/química , Cardiolipinas/química , Membrana Celular/metabolismo , Complejo IV de Transporte de Electrones/química , Metabolismo de los Lípidos , Modelos Moleculares , Proteínas del Complejo del Centro de Reacción Fotosintética/química
4.
Biophys J ; 80(3): 1395-405, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11222300

RESUMEN

In a recent publication, the structural details of an interaction between the Rhodobacter sphaeroides reaction center and the anionic phospholipid diphosphatidyl glycerol (cardiolipin) were described (K. E. McAuley, P. K. Fyfe, J. P. Ridge, N. W. Isaacs, R. J. Cogdell, and M. R. Jones, 1999, Proc. Natl. Acad. Sci. U.S.A. 96:14706-14711). This was the first crystallographic description of an interaction between this biologically important lipid and an integral membrane protein and was also the first piece of evidence that the reaction center has a specific interaction with cardiolipin. We have examined the extent to which the residues that interact with the cardiolipin are conserved in other species of photosynthetic bacteria with this type of reaction center and discuss the possibility that this cardiolipin binding site is a conserved feature of these reaction centers. We look at how sequence variations that would affect the shape of the cardiolipin binding site might affect the protein-cardiolipin interaction, by modeling the binding of cardiolipin to the reaction center from Rhodopseudomonas viridis.


Asunto(s)
Cardiolipinas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Modelos Moleculares , Conformación Molecular , Conformación Proteica , Rhodobacter sphaeroides/metabolismo , Rhodopseudomonas/metabolismo
5.
Biochemistry ; 39(49): 15032-43, 2000 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-11106481

RESUMEN

The X-ray crystal structure of a Rhodobacter sphaeroides reaction center with the mutation Ala M260 to Trp (AM260W) has been determined. Diffraction data were collected that were 97.6% complete between 30.0 and 2.1 A resolution. The electron density maps confirm the conclusions of a previous spectroscopic study, that the Q(A) ubiquinone is absent from the AM260W reaction center (Ridge, J. P., van Brederode, M. E., Goodwin, M. G., van Grondelle, R., and Jones, M. R. (1999) Photosynthesis Res. 59, 9-26). Exclusion of the Q(A) ubiquinone caused by the AM260W mutation is accompanied by a change in the packing of amino acids in the vicinity of the Q(A) site that form part of a loop that connects the DE and E helices of the M subunit. This repacking minimizes the volume of the cavity that results from the exclusion of the Q(A) ubiquinone, and further space is taken up by a feature in the electron density maps that has been modeled as a chloride ion. An unexpected finding is that the occupancy of the Q(B) site by ubiquinone appears to be high in the AM260W crystals, and as a result the position of the Q(B) ubiquinone is well-defined. The high quality of the electron density maps also reveals more precise information on the detailed conformation of the reaction center carotenoid, and we discuss the possibility of a bonding interaction between the methoxy group of the carotenoid and residue Trp M75. The conformation of the 2-acetyl carbonyl group in each of the reaction center bacteriochlorins is also discussed.


Asunto(s)
Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides , Ubiquinona/química , Alanina/genética , Sitios de Unión , Carotenoides/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Triptófano/genética
6.
Biochem J ; 351 Pt 3: 567-78, 2000 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11042110

RESUMEN

A series of reaction centres bearing mutations at the (Phe) M197 position were constructed in the photosynthetic bacterium Rhodobacter sphaeroides. This residue is adjacent to the pair of bacteriochlorophyll molecules (P(L) and P(M)) that is the primary donor of electrons (P) in photosynthetic light-energy transduction. All of the mutations affected the optical and electrochemical properties of the P bacteriochlorophylls. A mutant reaction centre with the change Phe M197 to Arg (FM197R) was crystallized, and a structural model constructed at 2.3 A (1 A=0.1 nm) resolution. The mutation resulted in a change in the structure of the protein at the interface region between the P bacteriochlorophylls and the monomeric bacteriochlorophyll that is the first electron acceptor (B(L)). The new Arg residue at the M197 position undergoes a significant reorientation, creating a cavity at the interface region between P and B(L). The acetyl carbonyl substituent group of the P(M) bacteriochlorophyll undergoes an out-of-plane rotation, which decreases the edge-to-edge distance between the macrocycles of P(M) and B(L). In addition, two new buried water molecules partially filled the cavity that is created by the reorientation of the Arg residue. These waters are in a suitable position to connect the macrocycles of P and B(L) via three hydrogen bonds. Transient absorption measurements show that, despite an inferred decrease in the driving force for primary electron transfer in the FM197R reaction centre, there is little effect on the overall rate of the primary reaction in the bulk of the reaction-centre population. Examination of the X-ray crystal structure reveals a number of small changes in the structure of the reaction centre in the interface region between the P and B(L) bacteriochlorophylls that could account for this faster-than-predicted rate of primary electron transfer.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Cristalografía por Rayos X , Transporte de Electrón , Enlace de Hidrógeno , Cinética , Complejos de Proteína Captadores de Luz , Mutagénesis Sitio-Dirigida , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Conformación Proteica
7.
Biochim Biophys Acta ; 1459(2-3): 413-21, 2000 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-11004458

RESUMEN

The reaction centre is nature's solar battery, and is found in a number of variations on a common theme in plants, algae and photosynthetic bacteria. During the last 20 years, a combination of X-ray crystallography, spectroscopy and mutagenesis has provided increasingly detailed insights into the mechanism of light energy transduction in the bacterial reaction centre. This mini-review looks at the application of X-ray crystallography to the bacterial reaction centre, focussing in particular on recent information on the structural consequences of site-directed mutagenesis, the roles played by water molecules in the reaction centre, the mechanism of ubiquinone reduction, and studies of the phospholipid environment of the protein.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Cristalografía por Rayos X , Metabolismo Energético , Herbicidas/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides , Rhodopseudomonas , Ubiquinona/química , Ubiquinona/metabolismo , Agua/química , Agua/metabolismo
8.
Biochemistry ; 39(20): 5953-60, 2000 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-10821666

RESUMEN

Reaction centers with the double mutation Phe M197 to Arg and Gly M203 to Asp (FM197R/GM203D) have been crystallized from an antenna-deficient strain of Rhodobacter sphaeroides, and the structure has been determined at 2.7 A resolution. Unlike in reaction centers with a single FM197R mutation, the Arg M197 residue in the FM197R/GM203D reaction center adopts a position similar to that of the native Phe residue in the wild-type reaction center. Asp M203 is packed in such a way that the gamma-carboxy group interacts with the backbone carbonyl of Arg M197. The Asp M203 residue takes up part of the volume that is occupied in the wild-type reaction center by a water molecule. This water has been proposed to form a hydrogen bond interaction with the 9-keto carbonyl group of the active branch accessory bacteriochlorophyll, particularly when the primary donor bacteriochlorophylls are oxidized. The GM203D mutation therefore appears to remove the possibility of this hydrogen bond interaction by exclusion of this water molecule, as well as altering the local dielectric environment of the 9-keto carbonyl group. We examine whether the observed structural changes can provide new or alternative explanations for the absorbance and electron-transfer properties of reaction centers with the FM197R and GM203D mutations.


Asunto(s)
Sustitución de Aminoácidos/genética , Ácido Aspártico/química , Glicina/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Mutación Puntual , Ácido Aspártico/genética , Bacterioclorofilas/química , Cristalografía por Rayos X , Transporte de Electrón , Glicina/genética , Complejos de Proteína Captadores de Luz , Oxidación-Reducción , Conformación Proteica , Rhodobacter sphaeroides , Espectrofotometría , Relación Estructura-Actividad
9.
FEBS Lett ; 467(2-3): 285-90, 2000 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-10675555

RESUMEN

The X-ray crystal structure of a reaction centre from Rhodobacter sphaeroides with a mutation of tyrosine M210 to tryptophan (YM210W) has been determined to a resolution of 2.5 A. Structural conservation is very good throughout the body of the protein, with the tryptophan side chain adopting a position in the mutant complex closely resembling that of the tyrosine in the wild-type complex. The spectroscopic properties of the YM210W reaction centre are discussed with reference to the structural data, with particular focus on evidence that the introduction of the bulkier tryptophan in place of the native tyrosine may cause a small tilt of the macrocycle of the B(L) monomeric bacteriochlorophyll.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química , Complejos de Proteína Captadores de Luz , Modelos Moleculares , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Conformación Proteica , Rhodobacter sphaeroides/genética , Triptófano/química , Tirosina/química , Difracción de Rayos X
10.
Proc Natl Acad Sci U S A ; 96(26): 14706-11, 1999 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-10611277

RESUMEN

Anionic lipids play a variety of key roles in biomembrane function, including providing the immediate environment for the integral membrane proteins that catalyze photosynthetic and respiratory energy transduction. Little is known about the molecular basis of these lipid-protein interactions. In this study, x-ray crystallography has been used to examine the structural details of an interaction between cardiolipin and the photoreaction center, a key light-driven electron transfer protein complex found in the cytoplasmic membrane of photosynthetic bacteria. X-ray diffraction data collected over the resolution range 30.0-2.1 A show that binding of the lipid to the protein involves a combination of ionic interactions between the protein and the lipid headgroup and van der Waals interactions between the lipid tails and the electroneutral intramembrane surface of the protein. In the headgroup region, ionic interactions involve polar groups of a number of residues, the protein backbone, and bound water molecules. The lipid tails sit along largely hydrophobic grooves in the irregular surface of the protein. In addition to providing new information on the immediate lipid environment of a key integral membrane protein, this study provides the first, to our knowledge, high-resolution x-ray crystal structure for cardiolipin. The possible significance of this interaction between an integral membrane protein and cardiolipin is considered.


Asunto(s)
Cardiolipinas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Sitios de Unión , Cardiolipinas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Estructura Terciaria de Proteína , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética
11.
Biochemistry ; 37(14): 4740-50, 1998 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-9537989

RESUMEN

Reaction centers have been crystallized from the antenna-deficient RCO2 strain of Rhodobacter sphaeroides, and a structural model has been constructed at 2.6 A resolution. The antenna-deficient strain allows assessment of the structural integrity of the reaction center at each stage in the purification-crystallization procedure. Spectroscopic evidence indicates that the properties of the reaction center bacteriopheophytins and the primary donor bacteriochlorophylls are modified somewhat on removal of the protein complex from the membrane and that these changes are carried through to the crystal form of the reaction center. The structure of a FM197R/YM177F mutant reaction center has also been determined to 2.55 A resolution. The mutant complex shows an unexpected change in structure, with a significant reorientation of the new arginine, the incorporation of a new water molecule into the structure, and rotation of the 2-acetyl carbonyl group of one of the primary donor bacteriochlorophylls to a more out-of-plane geometry. Changes in the optical spectrum of the FM197R/YM177F reaction center are discussed with respect to the altered structure of the complex.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química , Cristalografía por Rayos X , Datos de Secuencia Molecular , Mutagénesis , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Conformación Proteica , Rhodobacter sphaeroides/genética
12.
Curr Opin Struct Biol ; 6(4): 467-72, 1996 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8794155

RESUMEN

The purple bacterial antenna complexes continue to provide an area of very active and fertile research. During the past year, exciting advances have been made both on their structure and function, and on how their synthesis is regulated by various environmental factors.


Asunto(s)
Proteínas Bacterianas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodospirillaceae/química , Proteínas Bacterianas/biosíntesis , Carotenoides/fisiología , Transferencia de Energía , Regulación Bacteriana de la Expresión Génica , Complejos de Proteína Captadores de Luz , Proteínas del Complejo del Centro de Reacción Fotosintética/biosíntesis
13.
Photosynth Res ; 48(1-2): 55-63, 1996 May.
Artículo en Inglés | MEDLINE | ID: mdl-24271286

RESUMEN

Now is a very exciting time for researchers in the area of the primary reactions of purple bacterial photosynthesis. Detailed structural information is now available for not only the reaction center (Lancaster et al. 1995, in: Blankenship RE et al. (eds) Anoxygenic Photosynthetic Bacteria, pp 503-526), but also LH2 from Rhodopseudomonas acidophila (McDermott et al. 1995, Nature 374: 517-521) and LH1 from Rhodospirillum rubrum (Karrasch et al. 1995. EMBO J 14: 631-638). These structures can now be integrated to produce models of the complete photosynthetic unit (PSU) (Papiz et al., 1996, Trends Plant Sci, in press), which opens the door to a much more detailed understanding of the energy transfer events occurring within the PSU.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA