Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 27(17): 2677-2683.e3, 2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-28867206

RESUMEN

The evolution of complex behavior is driven by the interplay of morphological specializations and neuromuscular control mechanisms [1-3], and it is often difficult to tease apart their respective contributions. Avian vocal learning and associated neural adaptations are thought to have played a major role in bird diversification [4-8], whereas functional significance of substantial morphological diversity of the vocal organ remains largely unexplored. Within the most species-rich order, Passeriformes, "tracheophones" are a suboscine group that, unlike their oscine sister taxon, does not exhibit vocal learning [9] and is thought to phonate with tracheal membranes [10, 11] instead of the two independent sources found in other passerines [12-14]. Here we show tracheophones possess three sound sources, two oscine-like labial pairs and the unique tracheal membranes, which collectively represent the largest described number of sound sources for a vocal organ. Birds with experimentally disabled tracheal membranes were still able to phonate. Instead of the main sound source, the tracheal membranes constitute a morphological specialization, which, through interaction with bronchial labia, contributes to different acoustic features such as spectral complexity, amplitude modulation, and enhanced sound amplitude. In contrast, these same features arise in oscines from neuromuscular control of two labial sources [15-17]. These findings are supported by a modeling approach and provide a clear example for how a morphological adaptation of the tracheophone vocal organ can generate specific, complex sound features. Morphological specialization therefore constitutes an alternative path in the evolution of acoustic diversity to that of oscine vocal learning and complex neural control.


Asunto(s)
Passeriformes/anatomía & histología , Passeriformes/fisiología , Tráquea/anatomía & histología , Tráquea/fisiología , Vocalización Animal , Animales , Argentina , Evolución Biológica , Aprendizaje , Masculino , Sonido
2.
Endocrinology ; 154(9): 3168-77, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23782945

RESUMEN

Androgenic hormones regulate many aspects of animal social behavior, including the elaborate display routines on which many species rely for advertisement and competition. One way that this might occur is through peripheral effects of androgens, particularly on skeletal muscles that control complex movements and postures of the body and its limbs. However, the specific contribution of peripheral androgen-muscle interactions to the performance of elaborate behavioral displays in the natural world has never been examined. We study this issue in one of the only natural physiological models of animal acrobatics: the golden-collared manakin (Manacus vitellinus). In this tropical bird, males compete with each other and court females by producing firecracker-like wing- snaps and by rapidly dancing among saplings over the forest floor. To test how activation of peripheral androgen receptors (AR) influences this display, we treat reproductively active adult male birds with the peripherally selective antiandrogen bicalutamide (BICAL) and observe the effects of this manipulation on male display performance. We not only validate the peripheral specificity of BICAL in this species, but we also show that BICAL treatment reduces the frequency with which adult male birds perform their acrobatic display maneuvers and disrupts the overall structure and fine-scale patterning of these birds' main complex wing-snap sonation. In addition, this manipulation has no effect on the behavioral metrics associated with male motivation to display. Together, our findings help differentiate the various effects of peripheral and central AR on the performance of a complex sociosexual behavioral phenotype by indicating that peripheral AR can optimize the motor skills necessary for the production of an elaborate animal display.


Asunto(s)
Animales Salvajes/fisiología , Proteínas Aviares/metabolismo , Destreza Motora , Músculo Esquelético/metabolismo , Receptores Androgénicos/metabolismo , Conducta Sexual Animal , Pájaros Cantores/fisiología , Antagonistas de Receptores Androgénicos/administración & dosificación , Antagonistas de Receptores Androgénicos/farmacología , Anilidas/administración & dosificación , Anilidas/farmacología , Animales , Animales Salvajes/crecimiento & desarrollo , Proteínas Aviares/antagonistas & inhibidores , Proteínas Aviares/genética , Implantes de Medicamentos , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Infusiones Subcutáneas , Masculino , Destreza Motora/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Nitrilos/administración & dosificación , Nitrilos/farmacología , Antiandrógenos no Esteroides/administración & dosificación , Antiandrógenos no Esteroides/farmacología , Panamá , Pigmentos Biológicos/metabolismo , ARN Mensajero/metabolismo , Distribución Aleatoria , Receptores Androgénicos/química , Receptores Androgénicos/genética , Conducta Sexual Animal/efectos de los fármacos , Pájaros Cantores/crecimiento & desarrollo , Compuestos de Tosilo/administración & dosificación , Compuestos de Tosilo/farmacología , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA