RESUMEN
Colombia announced the first case of severe acute respiratory syndrome coronavirus 2 on March 6, 2020. Since then, the country has reported a total of 5,002,387 cases and 127,258 deaths as of October 31, 2021. The aggressive transmission dynamics of SARS-CoV-2 motivate an investigation of COVID-19 at the national and regional levels in Colombia. We utilize the case incidence and mortality data to estimate the transmission potential and generate short-term forecasts of the COVID-19 pandemic to inform the public health policies using previously validated mathematical models. The analysis is augmented by the examination of geographic heterogeneity of COVID-19 at the departmental level along with the investigation of mobility and social media trends. Overall, the national and regional reproduction numbers show sustained disease transmission during the early phase of the pandemic, exhibiting sub-exponential growth dynamics. Whereas the most recent estimates of reproduction number indicate disease containment, with Rt<1.0 as of October 31, 2021. On the forecasting front, the sub-epidemic model performs best at capturing the 30-day ahead COVID-19 trajectory compared to the Richards and generalized logistic growth model. Nevertheless, the spatial variability in the incidence rate patterns across different departments can be grouped into four distinct clusters. As the case incidence surged in July 2020, an increase in mobility patterns was also observed. On the contrary, a spike in the number of tweets indicating the stay-at-home orders was observed in November 2020 when the case incidence had already plateaued, indicating the pandemic fatigue in the country.
Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Colombia/epidemiología , Predicción , Humanos , SARS-CoV-2RESUMEN
In 2010, toxigenic Vibrio cholerae was newly introduced to Haiti. Because resources are limited, decision-makers need to understand the effect of different preventive interventions. We built a static model to estimate the potential number of cholera cases averted through improvements in coverage in water, sanitation and hygiene (WASH) (i.e., latrines, point-of-use chlorination, and piped water), oral cholera vaccine (OCV), or a combination of both. We allowed indirect effects and non-linear relationships between effect and population coverage. Because there are limited incidence data for endemic cholera in Haiti, we estimated the incidence of cholera over 20 years in Haiti by using data from Malawi. Over the next two decades, scalable WASH interventions could avert 57,949-78,567 cholera cases, OCV could avert 38,569-77,636 cases, and interventions that combined WASH and OCV could avert 71,586-88,974 cases. Rate of implementation is the most influential variable, and combined approaches maximized the effect.