Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e36834, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263053

RESUMEN

Background: Doxorubicin (DOX) is a highly effective chemotherapy drug widely used to treat cancer, but its use is limited due to multisystemic toxicity. Lipid metabolism is also affected by doxorubicin. Orange juice can reduce dyslipidemia in other clinical situations and has already been shown to attenuate cardiotoxicity. Our aim is to evaluate the effects of Pera orange juice (Citrus sinensis L. Osbeck) on mitigating lipid metabolism imbalance, metabolic pathways, and DOX induced cytotoxic effects in the heart and liver. Methods: Twenty-four male Wistar rats were allocated into 3 groups: Control (C); DOX (D); and DOX plus Pera orange juice (DOJ). DOJ received orange juice for 4 weeks, while C and D received water. At the end of each week, D and DOJ groups received 4 mg/kg/week DOX, intraperitoneal. At the end of 4 weeks animals were submitted to echocardiography and euthanasia. Results: Animals treated with DOX decreased water intake and lost weight over time. At echocardiography, DOX treated rats presented morphologic alterations in the heart. DOX increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol, high density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides. It also reduced superoxide dismutase (SOD) activity, increased protein carbonylation in the heart and dihydroethidium (DHE) expression in the liver, decreased glucose transporter type 4 (GLUT4) and the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ1) in the heart, and reduced carnitine palmitoyltransferase I (CPT1) in the liver. Conclusion: DOX caused dyslipidemia, liver and cardiac toxicity by increasing oxidative stress, and altered energy metabolic parameters in both organs. Despite not improving changes in left ventricular morphology, orange juice did attenuate oxidative stress and mitigate the metabolic effects of DOX.

2.
J Cardiovasc Dev Dis ; 9(8)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36005418

RESUMEN

AIM: Evaluate the influence of doxycycline, an anti-inflammatory and matrix metalloproteinase (MMP) inhibitor, on the attenuation of chronic doxorubicin-induced cardiotoxicity in rats. METHODS: We allocated male Wistar rats into four groups: control (C), doxorubicin (D), doxycycline (inhibitor of MMP, IM), and Dox + doxycycline (DIM). Groups IM and DIM received doxycycline (5 mg/kg, IP) once a week for 4 weeks. In addition, 48 h after every doxycycline injection, groups D and DIM received Dox (5 mg/kg, IP). We performed echocardiogram and evaluated TIMP-4 and collagen I protein expression, MMP-2 activity, and oxidative stress and myocardial metabolism. RESULTS: Doxorubicin promotes left atrium (LA) and left ventricle (LV) dilatation and decreases in LV fractional shortening, which was improved by doxycycline. Moreover, doxycycline attenuated the LV cardiomyocyte hypertrophy and collagen type I expression. Doxorubicin increased phosphofructokinase and decreased beta-hydroxyacyl Co-A dehydrogenase, pyruvate dehydrogenase, citrate synthase, and ATP synthase activity, which was partially attenuated by doxycycline. Lastly, doxycycline improved antioxidant enzyme activity in the DIM group. CONCLUSION: Doxorubicin increases oxidative stress and promotes changes in myocardial energy metabolism, accompanied by structural and functional changes. Doxycycline attenuated the doxorubicin-induced cardiotoxicity, at least in part, through changes in myocardial energy metabolism.

3.
Nutrition ; 91-92: 111350, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34265580

RESUMEN

OBJECTIVES: Doxorubicin is a highly effective chemotherapeutic agent for treating several types of cancer; however, it can induce cardiotoxicity. We evaluated the influence of Pera and Moro orange juices on cardiac remodeling induced by acute administration of doxorubicin in rats. METHODS: We allocated 120 male Wistar rats into six groups: control (C), Pera orange juice (PO), Moro orange juice (MO), doxorubicin (D), doxorubicin + Pera orange juice (DPO), and doxorubicin + Moro orange juice (DMO). Groups PO and DPO received Pera orange juice, MO and DMO received Moro orange juice, and C and D received water with maltodextrin (100 g/L) for 4 wk. Subsequently, groups D, DPO, and DMO received 20 mg/kg doxorubicin and C, PO, and MO received saline. Echocardiogram and euthanasia were performed 48 h after doxorubicin injection. Juice and animal-serum flavonoid identification and quantification were evaluated by liquid chromatography/electrospray ionization multistage mass spectrometry. Oxidative stress and myocardial metabolism were evaluated by spectrophotometry. RESULTS: Systolic and diastolic left ventricular dysfunction increased oxidative stress and pathologic changes in myocardial energy metabolism of rats treated with doxorubicin. Intake of both orange juices improved left ventricular function, decreased oxidative stress, and attenuated the myocardial energy metabolism changes. Moro orange juice had a more pronounced effect than Pera orange juice in glutathione peroxidase activity, citrate synthase, and ß-hydroxyacyl-CoA dehydrogenase activity. CONCLUSIONS: Pera and Moro orange juices attenuated cardiac remodeling induced by doxorubicin, improved myocardial energy metabolism, and attenuated oxidative stress. However, Moro orange juice was more effective than Pera orange juice in modifying energy metabolism.


Asunto(s)
Citrus sinensis , Disfunción Ventricular Izquierda , Animales , Cardiotoxicidad/etiología , Doxorrubicina/toxicidad , Metabolismo Energético , Masculino , Estrés Oxidativo , Ratas , Ratas Wistar , Disfunción Ventricular Izquierda/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA