Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37896011

RESUMEN

Patterns of species diversity have been associated with changes in climate across latitude and elevation. However, the ecological and evolutionary mechanisms underlying these relationships are still actively debated. Here, we present a complementary view of the well-known tropical niche conservatism (TNC) hypothesis, termed the multiple zones of origin (MZO) hypothesis, to explore mechanisms underlying latitudinal and elevational gradients of phylogenetic diversity in tree communities. The TNC hypothesis posits that most lineages originate in warmer, wetter, and less seasonal environments in the tropics and rarely colonize colder, drier, and more seasonal environments outside of the tropical lowlands, leading to higher phylogenetic diversity at lower latitudes and elevations. In contrast, the MZO hypothesis posits that lineages also originate in temperate environments and readily colonize similar environments in the tropical highlands, leading to lower phylogenetic diversity at lower latitudes and elevations. We tested these phylogenetic predictions using a combination of computer simulations and empirical analyses of tree communities in 245 forest plots located in six countries across the tropical and subtropical Andes. We estimated the phylogenetic diversity for each plot and regressed it against elevation and latitude. Our simulated and empirical results provide strong support for the MZO hypothesis. Phylogenetic diversity among co-occurring tree species increased with both latitude and elevation, suggesting an important influence on the historical dispersal of lineages with temperate origins into the tropical highlands. The mixing of different floras was likely favored by the formation of climatically suitable corridors for plant migration due to the Andean uplift. Accounting for the evolutionary history of plant communities helps to advance our knowledge of the drivers of tree community assembly along complex climatic gradients, and thus their likely responses to modern anthropogenic climate change.

2.
Front Plant Sci ; 14: 1135480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909413

RESUMEN

The science of tropical dendrochronology is now emerging in regions where tree-ring dating had previously not been considered possible. Here, we combine wood anatomical microsectioning techniques and radiocarbon analysis to produce the first tree-ring chronology with verified annual periodicity for a new dendrochronological species, Neltuma alba (commonly known as "algarrobo blanco") in the tropical Andes of Bolivia. First, we generated a preliminary chronology composed of six trees using traditional dendrochronological methods (i.e., cross-dating). We then measured the 14C content on nine selected tree rings from two samples and compared them with the Southern Hemisphere (SH) atmospheric 14C curves, covering the period of the bomb 14C peak. We find consistent offsets of 5 and 12 years, respectively, in the calendar dates initially assigned, indicating that several tree rings were missing in the sequence. In order to identify the tree-ring boundaries of the unidentified rings we investigated further by analyzing stem wood microsections to examine anatomical characteristics. These anatomical microsections revealed the presence of very narrow terminal parenchyma defining several tree-ring boundaries within the sapwood, which was not visible in sanded samples under a stereomicroscope. Such newly identified tree rings were consistent with the offsets shown by the radiocarbon analysis and allowed us to correct the calendar dates of the initial chronology. Additional radiocarbon measurements over a new batch of rings of the corrected dated samples resulted in a perfect match between the dendrochronological calendar years and the 14C dating, which is based on good agreement between the tree-ring 14C content and the SH 14C curves. Correlations with prior season precipitation and temperature reveal a strong legacy effect of climate conditions prior to the current Neltuma alba growing season. Overall, our study highlights much potential to complement traditional dendrochronology in tree species with challenging tree-ring boundaries with wood anatomical methods and 14C analyses. Taken together, these approaches confirm that Neltuma alba can be accurately dated and thereby used in climatic and ecological studies in tropical and subtropical South America.

3.
PLoS One ; 10(3): e0121458, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803846

RESUMEN

Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (ß-diversity) across elevations. Recent studies have suggested that ß-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic ß-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of ß-diversity to null-model expectations. ß-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in ß-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in ß-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in ß-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in ß-diversity. In contrast to the hypothesis that variation in species pools alone drives ß-diversity gradients, we show that local community assembly mechanisms contribute strongly to systematic changes in ß-diversity across elevations. We conclude that scale-dependent variation in community assembly mechanisms underlies these iconic gradients in global biodiversity.


Asunto(s)
Altitud , Biodiversidad , Biota , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Bolivia , Análisis de los Mínimos Cuadrados , Análisis de Regresión , Análisis Espacial , Especificidad de la Especie , Clima Tropical
4.
La Paz; HNB; 2009. 17 p.
No convencional en Español | LIBOCS, LIBOSP | ID: biblio-1305848

RESUMEN

Copal es una palabra azteca que deriva de la palabra náhuatl copalli que significa "con la ayuda de este camino" o "gracias a este camino" (Corzo, 1978), en alusión a la quema de resinas como una vía para contactarse con los dioses o el mundo supra-terrenal. Los conquistadores europeos se encargaron posteriormente de difundir este término genérico y en la actualidad se emplea en mercados de América y Europa para referirse a una amplia gama de resinas de procedencia diversa (Case et al., 2003).


Asunto(s)
Cultura , Medicina Tradicional , Población , Servicio Social , Bolivia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA