Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(2)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36833420

RESUMEN

The genus Agave presents a bimodal karyotype with x = 30 (5L, large, +25S, small chromosomes). Bimodality within this genus is generally attributed to allopolyploidy in the ancestral form of Agavoideae. However, alternative mechanisms, such as the preferential accumulation of repetitive elements at the macrochromosomes, could also be important. Aiming to understand the role of repetitive DNA within the bimodal karyotype of Agave, genomic DNA from the commercial hybrid 11648 (2n = 2x = 60, 6.31 Gbp) was sequenced at low coverage, and the repetitive fraction was characterized. In silico analysis showed that ~67.6% of the genome is mainly composed of different LTR retrotransposon lineages and one satellite DNA family (AgSAT171). The satellite DNA localized at the centromeric regions of all chromosomes; however, stronger signals were observed for 20 of the macro- and microchromosomes. All transposable elements showed a dispersed distribution, but not uniform across the length of the chromosomes. Different distribution patterns were observed for different TE lineages, with larger accumulation at the macrochromosomes. The data indicate the differential accumulation of LTR retrotransposon lineages at the macrochromosomes, probably contributing to the bimodality. Nevertheless, the differential accumulation of the satDNA in one group of macro- and microchromosomes possibly reflects the hybrid origin of this Agave accession.


Asunto(s)
Agave , ADN Satélite , Agave/genética , Retroelementos , Cariotipo , Centrómero
2.
Protoplasma ; 254(1): 285-292, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26758880

RESUMEN

Fragile sites (FSs) in plants have been described for species like Lolium and other grasses. Whereas in humans FSs were shown to be involved in genome instabilities; the consequences of FSs expression in plants are not known yet. To evaluate whether FSs cause karyotype instabilities, we assessed the frequency of micronuclei and lagging chromosomes in meristematic cells, the stability of the DNA content, and the occurrence of neocentromeres in the presumed chromosomal fragments of Lolium perenne, Lolium multiflorum, Festuca arrundinacea, and two Festulolium hybrids. The cell cycle analysis along with flow cytometric genome size measurements showed high stability in all genomes evaluated. Neocentromeric activity was neither observed in the presumed fragments nor in any other chromosomal region, then this is not the mechanism responsible by the stability. However, Fluorescence in situ hybridization (FISH) with a 45S ribosomal DNA (rDNA) probe in combination with YOYO staining of metaphasic chromosomes showed that many extended nucleolus organizing region (NOR) form very thin YOYO-positive chromatin fibers connecting the acentric 'fragment' with the centromere-containing chromosome region. The obtained data indicate that the expression of FSs does not result in genome instabilities or neocentromere formation. The FS-containing 45S rDNA carrying chromatin fibers undergo a cell cycle and gene activity-dependent dynamic decondensation process.


Asunto(s)
Cromosomas de las Plantas/genética , Festuca/genética , Inestabilidad Genómica , Cariotipo , Lolium/genética , ARN Ribosómico/genética , Recuento de Células , Sitios Frágiles del Cromosoma/genética , Citometría de Flujo , Genotipo , Hibridación Fluorescente in Situ , Metafase/genética
3.
Chromosome Res ; 24(3): 285-97, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27072826

RESUMEN

Genome instability is observed in several species hybrids. We studied the mechanisms underlying the genome instability in hexaploid hybrids of Napier grass (Pennisetum purpureum R.) and pearl millet (Pennisetum glaucum L.) using a combination of different methods. Chromosomes of both parental genomes are lost by micronucleation. Our analysis suggests that genome instability occurs preferentially in meristematic root tissue of hexaploid hybrids, and chromosome elimination is not only caused by centromere inactivation. Likely, beside centromere dysfunction, unrepaired DNA double-strand breaks result in fragmented chromosomes in synthetic hybrids.


Asunto(s)
Centrómero/metabolismo , Cromosomas de las Plantas/genética , Inestabilidad Genómica/genética , Meristema/genética , Pennisetum/genética , Raíces de Plantas/genética , Quimera/genética , Roturas del ADN de Doble Cadena , Hibridación Genética , Hibridación Fluorescente in Situ , Micronúcleos con Defecto Cromosómico , Fitomejoramiento , Poliploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA