Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 16(14): 11434-11445, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39068670

RESUMEN

BACKGROUND: The expression patterns and prognostic value of Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) family genes in breast cancer remain to be elucidated. METHODS: The expression levels, prognostic value, and biological function of PLODs were determined using Oncomine, cBioPortal, GEPIA, Timer, UALCAN, PrognoScan, GeneMANIA, Metascape, and breast cancer tissue microarrays. RESULTS: The expressions of PLOD1 and PLOD3 were upregulated in breast cancer tissues, indicating worse clinical stages. High expression levels of PLOD family genes were associated with worse disease-free survival and distant metastasis-free survival, while high expression levels of PLOD1 and PLOD3 were related to worse overall survival in all breast cancer patients. The levels of PLOD family genes were all significantly higher in the age ≤51 y group, HR-negative patients, and triple negative breast cancer (TNBC) patients. They are associated with tumor-infiltrating immune cells (TIICs), including CD4+ T cells, CD8+ T cells, B cells, macrophages, neutrophils, and dendritic cells. According to co-expression gene analysis and functional enrichment, they are associated with protein hydroxylation, collagen biosynthesis and modifying enzymes, collagen metabolism, RNA splicing, extracellular matrix organization, VEGFA-VEGFR2 signaling pathway, and skeletal system development. Immunohistochemistry showed that the expressions of all PLOD family genes were significantly elevated in breast cancer tissues. PLOD1 expression was positively correlated with ER, TNBC status, and tumor grade. PLOD2 expression was positively connected with Ki-67 status. PLOD3 expression was positively related with age and tumor grade. CONCLUSIONS: PLOD family genes are novel potential prognostic biomarkers for breast cancer, and targeting PLOD inhibitors might be an effective strategy for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Humanos , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Pronóstico , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
2.
Int J Biol Sci ; 20(8): 2980-2993, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904017

RESUMEN

Acute kidney injury (AKI) transformed to chronic kidney disease (CKD) is a critical clinical issue characterized by tubulointerstitial inflammation (TII) and fibrosis. However, the exact mechanism remains largely unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to obtain a high-resolution profile of T cells in AKI to CKD transition with a mice model of unilateral ischemia-reperfusion injury (uIRI). We found that T cells accumulated increasingly with the progression of AKI to CKD, which was categorized into 9 clusters. A notably increased proportion of CD8 T cells via self-proliferation occurred in the early stage of AKI was identified. Further study revealed that the CD8 T cells were recruited through CXCL16-CXCR6 pathway mediated by macrophages. Notably, CD8 T cells induced endothelial cell apoptosis via Fas ligand-Fas signaling. Consistently, increased CD8 T cell infiltration accompanied with peritubular capillaries (PTCs) rarefaction was observed in uIRI mice. More impressively, the loss of PTCs and renal fibrosis was remarkably ameliorated after the elimination of CD8 T cells. In summary, our study provides a novel insight into the role of CD8 T cells in the transition from AKI to CKD via induction of PTCs rarefaction, which could suggest a promising therapeutic target for AKI.


Asunto(s)
Lesión Renal Aguda , Linfocitos T CD8-positivos , Insuficiencia Renal Crónica , Animales , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Ratones , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/inmunología , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Receptores CXCR6/metabolismo , Quimiocina CXCL16/metabolismo , Daño por Reperfusión/inmunología , Daño por Reperfusión/metabolismo , Apoptosis
3.
Clin Kidney J ; 17(1): sfad191, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38186888

RESUMEN

Background: The discovery of phospholipase A2 receptor (PLA2R) and its antibody (aPLA2Rab) has paved the way for diagnosing PLA2R-associated membranous nephropathy (PLA2R-MN) with a high specificity of 98%. However, the sensitivity was only 40% to 83.9%, and there is ongoing discussion around determining the optimal threshold for diagnosis. Recent advancements in the use of exosomes, a novel form of "liquid biopsy," have shown great promise in identifying markers for various medical conditions. Methods: Protein mass spectrometry and western blot were applied to verify the existence of PLA2R antigen in the urine exosome. We then evaluated the efficacy of urinary exosomal PLA2R antigen alone or combined with serum aPLA2Rab level to diagnose PLA2R-MN. Results: The urinary exosomes contained a high abundance of PLA2R antigen as evidenced by protein mass spectrometry and western blot in 85 PLA2R-MN patients vs the disease controls (14 secondary MN patients, 22 non-MN patients and 4 PLA2R-negative MN patients) and 20 healthy controls. Of note, urinary exosomal PLA2R antigen abundance also had a good consistency with the PLA2R antigen level in the renal specimens of PLA2R-MN patients. The sensitivity of urinary exosomal PLA2R for diagnosing PLA2R-MN reached 95.4%, whereas the specificity was 63.3%. Combining detection of the urinary exosomal PLA2R and serum aPLA2Rab could develop a more sensitive diagnostic method for PLA2R-MN, especially for patients with serum aPLA2Rab ranging from 2 to 20 RU/mL. Conclusions: Measurement of urinary exosomal PLA2R could be a sensitive method for the diagnosis of PLA2R-MN.

4.
J Am Soc Nephrol ; 32(10): 2467-2483, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34127536

RESUMEN

BACKGROUND: AKI is a significant public health problem with high morbidity and mortality. Unfortunately, no definitive treatment is available for AKI. RNA interference (RNAi) provides a new and potent method for gene therapy to tackle this issue. METHODS: We engineered red blood cell-derived extracellular vesicles (REVs) with targeting peptides and therapeutic siRNAs to treat experimental AKI in a mouse model after renal ischemia/reperfusion (I/R) injury and unilateral ureteral obstruction (UUO). Phage display identified peptides that bind to the kidney injury molecule-1 (Kim-1). RNA-sequencing (RNA-seq) characterized the transcriptome of ischemic kidney to explore potential therapeutic targets. RESULTS: REVs targeted with Kim-1-binding LTH peptide (REVLTH) efficiently homed to and accumulated at the injured tubules in kidney after I/R injury. We identified transcription factors P65 and Snai1 that drive inflammation and fibrosis as potential therapeutic targets. Taking advantage of the established REVLTH, siRNAs targeting P65 and Snai1 were efficiently delivered to ischemic kidney and consequently blocked the expression of P-p65 and Snai1 in tubules. Moreover, dual suppression of P65 and Snai1 significantly improved I/R- and UUO-induced kidney injury by alleviating tubulointerstitial inflammation and fibrosis, and potently abrogated the transition to CKD. CONCLUSIONS: A red blood cell-derived extracellular vesicle platform targeted Kim-1 in acutely injured mouse kidney and delivered siRNAs for transcription factors P65 and Snai1, alleviating inflammation and fibrosis in the tubules.


Asunto(s)
Lesión Renal Aguda/terapia , Vesículas Extracelulares , Terapia Genética/métodos , Receptor Celular 1 del Virus de la Hepatitis A/genética , Factores de Transcripción de la Familia Snail/genética , Factor de Transcripción ReIA/genética , Lesión Renal Aguda/patología , Animales , Modelos Animales de Enfermedad , Eritrocitos , Fibrosis , Inflamación/terapia , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Ratones , Péptidos , Interferencia de ARN , ARN Interferente Pequeño/uso terapéutico , Daño por Reperfusión/complicaciones , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Transcripción ReIA/metabolismo , Obstrucción Ureteral/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA