Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genomics ; 113(1 Pt 2): 450-461, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32898639

RESUMEN

AIM: The co-expression network of long non-coding RNA ROR (lncRNA-ROR) and microRNA-185-3p (miR-185-3p) has not been focused on osteosarcoma. Therein, this work was initiated to uncover lncRNA-ROR and miR-185-3p functions in osteosarcoma. METHODS: LncRNA-ROR, miR-185-3p and Yes-associated protein 1 (YAP1) expression in osteosarcoma tissues and cells were detected. The screened cells (MG63 and U2OS) were transfected with decreased and/or increased lncRNA-ROR and miR-185-3p to explore osteosarcoma progression. Tumor growth was detected by tumor xenografts in mice. RESULTS: Up-regulated lncRNA-ROR and YAP1 and down-regulated miR-185-3p were found in osteosarcoma. LncRNA ROR knockdown or miR-185-3p overexpression inhibited osteosarcoma cell progression while lncRNA ROR elevation or miR-185-3p inhibition presented the opposite effects. Function of lncRNA ROR was rescued by miR-185-3p and regulated the growth and metastasis of osteosarcoma cells via modulating YAP1, the target gene of miR-185-3p. CONCLUSION: This work illustrates that lncRNA-ROR down-regulation or miR-185-3p up-regulation inhibits osteosarcoma progression via YAP1 repression.


Asunto(s)
MicroARNs/genética , Osteosarcoma/genética , ARN Largo no Codificante/genética , Proteínas Señalizadoras YAP/genética , Adolescente , Adulto , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Niño , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/metabolismo , Persona de Mediana Edad , Osteosarcoma/metabolismo , Osteosarcoma/patología , ARN Largo no Codificante/metabolismo , Proteínas Señalizadoras YAP/metabolismo
2.
Micromachines (Basel) ; 9(8)2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30424302

RESUMEN

A flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton (LRSPP) waveguide for microwave photonic application was investigated. Low-loss polymer materials and high-quality silver strip were served as cladding layers and core layer of the LRSPP waveguide, respectively. By using finite element method (FEM), the thermal distribution and the optical field distribution have been carefully optimized. The fabricated device was characterized by end-fire excitation with a 1550 nm laser. The transmission performance of high-speed data and microwave modulated optical signal was measured while using a broadband microwave photonics link. The results indicated that the propagation loss of the LRSPP waveguide was about 1.92 dB/cm. The maximum attenuation of optical signal was about 28 dB at a driving voltage of 4.17 V, and the variable attenuation of microwave signals was obviously observed by applying different driving voltage to the heater. This flexible plasmonic variable attenuator is promising for chip-scale interconnection in high-density photonic integrated circuits and data transmission and amplitude control in microwave photonic systems.

3.
Sci Rep ; 7(1): 6813, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28754959

RESUMEN

One of the main challenges for highly sensitive surface-enhanced Raman scattering (SERS) detection is the noise interference of fluorescence signals arising from the analyte molecules. Here we used three types of gold nanostars (GNSs) SERS probes treated by different surface modification methods to reveal the simultaneously existed Raman scattering enhancement and inhibiting fluorescence behaviors during the SERS detection process. As the distance between the metal nanostructures and the analyte molecules can be well controlled by these three surface modification methods, we demonstrated that the fluorescence signals can be either quenched or enhanced during the detection. We found that fluorescence quenching will occur when analyte molecules are closely contacted to the surface of GNSs, leading to a ~100 fold enhancement of the SERS sensitivity. An optimized Raman signal detection limit, as low as the level of 10-11 M, were achieved when Rhodamine 6 G were used as the analyte. The presented fluorescence-free GNSs SERS substrates with plentiful hot spots and controllable surface plasmon resonance wavelengths, fabricated using a cost-effective self-assembling method, can be very competitive candidates for high-sensitive SERS applications.

4.
Sci Rep ; 7: 41146, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28117412

RESUMEN

Polarization error and temperature noise are two main limits to the performance of resonant fiber optic gyroscope (RFOG). To overcome these limits, we demonstrated a hybrid resonator consisting of a polymer-based long-range surface plasmon polariton (LRSPP) waveguide coupler and a silica fiber. Single-polarization property of LRSPP waveguide and the offsetting of the opposite thermo-optical characteristics between the polymer-based LRSPP waveguide and the silica fiber can effectively inhibit both the polarization error and the temperature noise of RFOG. The measured resonance spectrum of the hybrid resonator shows the absence of polarization noise. The temperature dependence of wavelength shift (TDWS) of resonator dropped to about 2 pm/°C, or even to 0 pm/°C with optimal structure, which dramatically improves the temperature stability of gyroscope system. In addition, the hybrid resonator also shows tremendous application potential in rate-grade and tactical-grade gyroscopes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA