Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188893, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37015314

RESUMEN

The incidence of pancreatic cancer is increasing in both developed and developing Nations. In recent years, various research evidence suggested that reprogrammed metabolism may play a key role in pancreatic cancer tumorigenesis and development. Therefore, it has great potential as a diagnostic, prognostic and therapeutic target. Amino acid metabolism is deregulated in pancreatic cancer, and changes in amino acid metabolism can affect cancer cell status, systemic metabolism in malignant tumor patients and mistakenly involved in different biological processes including stemness, proliferation and growth, invasion and migration, redox state maintenance, autophagy, apoptosis and even tumor microenvironment interaction. Generally, the above effects are achieved through two pathways, energy metabolism and signal transduction. This review aims to highlight the current research progress on the abnormal alterations of amino acids metabolism in pancreatic cancer, how they affect tumorigenesis and development of pancreatic cancer and the application prospects of them as diagnostic, prognostic and therapeutic targets.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Transducción de Señal , Aminoácidos/metabolismo , Carcinogénesis , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Stem Cell Res Ther ; 12(1): 453, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380571

RESUMEN

Hair follicle stem cells (HFSCs) are among the most widely available resources and most frequently approved model systems used for studying adult stem cells. HFSCs are particularly useful because of their self-renewal and differentiation properties. Additionally, the cyclic growth of hair follicles is driven by HFSCs. There are high expectations for the use of HFSCs as favourable systems for studying the molecular mechanisms that contribute to HFSC identification and can be applied to hair loss therapy, such as the activation or regeneration of hair follicles, and to the generation of hair using a tissue-engineering strategy. A variety of molecules are involved in the networks that critically regulate the fate of HFSCs, such as factors in hair follicle growth and development (in the Wnt pathway, Sonic hedgehog pathway, Notch pathway, and BMP pathway), and that suppress apoptotic cues (the apoptosis pathway). Here, we review the life cycle, biomarkers and functions of HFSCs, concluding with a summary of the signalling pathways involved in HFSC fate for promoting better understanding of the pathophysiological changes in the HFSC niche. Importantly, we highlight the potential mechanisms underlying the therapeutic targets involved in pathways associated with the treatment of hair loss and other disorders of skin and hair, including alopecia, skin cancer, skin inflammation, and skin wound healing.


Asunto(s)
Folículo Piloso , Células Madre , Cabello , Proteínas Hedgehog , Vía de Señalización Wnt
3.
Front Physiol ; 12: 726591, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002749

RESUMEN

Fractures of complex body parts are often serious and difficult to handle, and they have high technical and training requirements. However, the realistic situation is that there are few opportunities for the junior residents, trainee doctors, and especially medical students to contact enough clinical practice and see such fracture patients. Fortunately, with the rapid development and continuous progress of 3D printing and related technologies, this situation has gradually gotten better and better. In this research, we confirmed that 3D printing technology could improve the effectiveness of fracture teaching and medical learning from multiple dimensions. We comprehensively screened and assessed 223 papers from the Web of Science (WoS) Core Collection on October 3, 2021, with "((3D) AND ((printing) OR (printed)) AND (fracture)) AND ((education) OR (training) OR (teaching))" as the retrieval strategy. Additionally, we used the VOSviewer software to analyze the keywords and countries and the organizations of the publications, then a series of scientometric and visualized analyses were made based on the retrieval results. Afterward, multiple databases were retrieved according to our selection criteria, we selected eight studies for the extensive literature analysis. The extracted data contained information of authors, problems solved, participants, methods, assessments, results, and benefits/limitations. These intuitive and in-depth analyses further confirmed and appraised the advantages of 3D printing in complex fracture models more objectively. In conclusion, 3D printing could improve the effectiveness and extension of fracture teaching, as well as medical learning, by providing the powerful interaction with 3D effect, wakening students learning interest, and allowing the junior residents, trainee doctors to have as realistic a virtual practice experience as possible. Through this research, it is expected that more researchers could be attracted to conduct more comprehensive and thorough studies on the application of 3D printing for training and educational propose, to promote the development of 3D technology-based medical education practice and further deepen the reform of medical education and improve the quality of fracture education and learning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA