Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124150

RESUMEN

Drought stress significantly affects the growth, development, and yield of cotton, triggering the response of multiple genes. Among them, ascorbate peroxidase (APX) is one of the important antioxidant enzymes in the metabolism of reactive oxygen species in plants, and APX enhances the ability of plants to resist oxidation, thus increasing plant stress tolerance. Therefore, enhancing the activity of APX in cells is crucial to improving plant stress resistance. Previous studies have isolated differentially expressed proteins under drought stress (GhAPX7) in drought-resistant (KK1543) and drought-sensitive (XLZ26) plants. Thus, this study analyzed the expression patterns of GhAPX7 in different cotton tissues to verify the drought resistance function of GhAPX7 and explore its regulatory pathways. GhAPX7 had the highest expression in cotton leaves, which significantly increased under drought stress, suggesting that GhAPX7 is essential for improving antioxidant capacity and enzyme activities in cotton. GhAPX7 silencing indirectly affects pronounced leaf yellowing and wilting in drought-resistant and drought-sensitive plants under drought stress. Malondialdehyde (MDA) content was significantly increased and chlorophyll and proline content and APX enzyme activity were generally decreased in silenced plants compared to the control. This result indicates that GhAPX7 may improve drought resistance by influencing the contents of MDA, chlorophyll, proline, and APX enzyme activity through increased expression levels. Transcriptome analysis revealed that the drought-related differentially expressed genes between the control and treated groups enriched plant hormone signal transduction, MAPK signaling, and plant-pathogen interaction pathways. Therefore, the decreased expression of GhAPX7 significantly affects the expression levels of genes in these three pathways, reducing drought resistance in plants. This study provides insights into the molecular mechanisms of GhAPX7 and its role in drought resistance and lays a foundation for further research on the molecular mechanisms of response to drought stress in cotton.

2.
Adv Sci (Weinh) ; 11(18): e2300129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461489

RESUMEN

Dysregulated circular RNAs (circRNAs) contribute to tumourigenesis and cancer progression. However, the expression patterns and biological functions of circRNAs in colorectal cancer (CRC) remain elusive. Here, RNA sequencing and bioinformatics analyses are applied to screen for aberrantly expressed circRNAs. The expression of circFBXW4 in CRC tissues and cell lines is determined by quantitative real-time PCR. A series of in vitro and in vivo biological function assays are implemented to assess the functions of circFBXW4. The regulatory mechanisms linking circFBXW4, miR-338-5p, and SLC5A7 are explored by western blotting, dual luciferase reporter assays, and RNA pull-down assays. CircFBXW4 is dramatically downregulated in CRC tissues and cell lines. circFBXW4 downregulation is clearly correlated with malignant features and patient overall survival in CRC. Functionally, ectopic expression of circFBXW4 strikingly impairs the proliferation, migration, and invasion capacities of CRC cells in vitro and in vivo, whereas circFBXW4 knockdown has the opposite effects. Mechanistically, circFBXW4 competitively binds to miR-338-5p and prevents it from interacting with and repressing its target SLC5A7, thus suppressing the progression of CRC. This study reveals the specific critical role of circFBXW4 in inhibiting CRC progression via the miR-338-5p/SLC5A7 axis and provides an additional target for eradicating CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Circular , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Proteínas F-Box/genética , Simportadores/genética , Simportadores/metabolismo
3.
PeerJ ; 12: e16951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38436027

RESUMEN

Background: Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa and has a poor prognosis. Stomach adenocarcinoma (STAD) covers 95% of total gastric cancer. This study aimed to identify the prognostic value of RNA methylation-related genes in gastric cancer. Methods: In this study, The Cancer Genome Atlas (TCGA)-STAD and GSE84426 cohorts were downloaded from public databases. Patients were classified by consistent cluster analysis based on prognosis-related differentially expressed RNA methylation genes Prognostic genes were obtained by differential expression, univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses. The prognostic model was established and validated in the training set, test set and validation set respectively. Independent prognostic analysis was implemented. Finally, the expression of prognostic genes was affirmed by reverse transcription quantitative PCR (RT-qPCR). Results: In total, four prognostic genes (ACTA2, SAPCD2, PDK4 and APOD) related to RNA methylation were identified and enrolled into the risk signature. The STAD patients were divided into high- and low-risk groups based on the medium value of the risk score, and patients in the high-risk group had a poor prognosis. In addition, the RNA methylation-relevant risk signature was validated in the test and validation sets, and was authenticated as a reliable independent prognostic predictor. The nomogram was constructed based on the independent predictors to predict the 1/3/5-year survival probability of STAD patients. The gene set enrichment analysis (GSEA) result suggested that the poor prognosis in the high-risk subgroup may be related to immune-related pathways. Finally, the experimental results indicated that the expression trends of RNA methylation-relevant prognostic genes in gastric cancer cells were in agreement with the result of bioinformatics. Conclusion: Our study established a novel RNA methylation-related risk signature for STAD, which was of considerable significance for improving prognosis of STAD patients and offering theoretical support for clinical therapy.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Metilación de ARN , Pronóstico , Adenocarcinoma/genética , Biología Computacional , Proteínas Nucleares
4.
Plant Sci ; 335: 111813, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37543225

RESUMEN

Drought stress has a serious impact on the growth and development of cotton. To explore the relevant molecular mechanism of the drought stress response in cotton, gene mapping based on the QTL interval mapped by simplified genome BSA-seq of the drought-resistance-related RIL population was performed. A QTL region spanning 2.02 Mb on chromosome D07 was selected, and 201 resource materials were genotyped using 9 KASP markers in the interval. After local interval haplotype association analysis, the overlap of the 110 kb peak region confirmed the reliability of this region, and at the same time, the role of GhGF14-30, the only gene in the overlapping region, was modeled in the response of cotton to drought stress. qRTPCR analysis of the materials and population parents proved that this gene plays a role in the drought stress response in cotton. Virus-induced gene silencing proved the importance of this gene in drought-sensitive materials, and drought-resistance-related marker genes also proved that the GhGF14-30 gene may play an important role in the ABA and SOS signaling pathways. This study provides a basis for mining drought stress response functional genes in cotton and lays the foundation for the molecular mechanism of the GhGF14-30 gene in response to drought stress in cotton.


Asunto(s)
Sequías , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Haplotipos , Reproducibilidad de los Resultados , Mapeo Cromosómico , Gossypium/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
5.
Front Cell Dev Biol ; 9: 705537, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966734

RESUMEN

Research on the heterogeneity of colon cancer (CC) cells is limited. This study aimed to explore the CC cell differentiation trajectory and its clinical implication and to construct a prognostic risk scoring (RS) signature based on CC differentiation-related genes (CDRGs). Cell trajectory analysis was conducted on the GSE148345 dataset, and CDRG-based molecular subtypes were identified from the GSE39582 dataset. A CDRG-based prognostic RS signature was constructed using The Cancer Genome Atlas as the training set and GSE39582 as the validation set. Two subsets with distinct differentiation states, involving 40 hub CDRGs regulated by YY1 and EGR2, were identified by single-cell RNA sequencing data, of which subset I was related to hypoxia, metabolic disorders, and inflammation, and subset II was associated with immune responses and ferroptosis. The CDRG-based molecular subtypes could successfully predict the clinical outcomes of the patients, the tumor microenvironment status, the immune infiltration status, and the potential response to immunotherapy and chemotherapy. A nomogram integrating a five-CDRG-based RS signature and prognostic clinicopathological characteristics could successfully predict overall survival, with strong predictive performance and high accuracy. The study emphasizes the relevance of CC cell differentiation for predicting the prognosis and therapeutic response of patients to immunotherapy and chemotherapy and proposes a promising direction for CC treatment and clinical decision-making.

6.
Stem Cell Res Ther ; 12(1): 563, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717747

RESUMEN

BACKGROUND: Although numerous studies demonstrate the role of cancer stem cells in occurrence, recurrence, and distant metastases in gastric cancer (GC), little is known about the evolving genetic and epigenetic changes in the stem and progenitor cells. The purpose of this study was to identify the stem cell subtypes in GC and examine their clinical relevance. METHODS: Two publicly available datasets were used to identify GC stem cell subtypes, and consensus clustering was performed by unsupervised machine learning methods. The cancer stem cell (CSC) typing-related risk scoring (RS) model was established through multivariate Cox regression analysis. RESULTS: Cross-platform dataset-based two stable GC stem cell subtypes, namely low stem cell enrichment (SCE_L) and high stem cell enrichment (SCE_H), were prudently identified. Gene set enrichment analysis revealed that the classical oncogenic pathways, immune-related pathways, and regulation of stem cell division were active in SCE_H; ferroptosis, NK cell activation, and post-mutation repair pathways were active in SCE_L. GC stem cell subtypes could accurately predict clinical outcomes in patients, tumor microenvironment cell-infiltration characteristics, somatic mutation landscape, and potential responses to immunotherapy, targeted therapy, and chemotherapy. Additionally, a CSC typing-related RS model was established; it was strongly independent and could accurately predict the patient's overall survival. CONCLUSIONS: This study demonstrated the complex oncogenic mechanisms underlying GC. The findings provide a basis and reference for the diagnosis and treatment of GC.


Asunto(s)
Neoplasias Gástricas , Regulación Neoplásica de la Expresión Génica , Genómica , Humanos , Células Madre/metabolismo , Neoplasias Gástricas/metabolismo , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA