Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroreport ; 35(6): 343-351, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526969

RESUMEN

Inflammatory pain, the most prevalent disease globally, remains challenging to manage. Electroacupuncture emerges as an effective therapy, yet its underlying mechanisms are not fully understood. This study investigates whether adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-regulated silent information regulator 1 (SIRT1) contributes to electroacupuncture's antinociceptive effects by modulating macrophage/microglial polarization in the spinal dorsal horn of a mouse model of inflammatory pain. In this study, mice, introduced to inflammatory pain through subcutaneous injections of complete freund's adjuvant (CFA) in the plantar area, underwent electroacupuncture therapy every alternate day for 30-min sessions. The assessment of mechanical allodynia and thermal hyperalgesia in these subjects was carried out using paw withdrawal frequency and paw withdrawal latency measurements, respectively. Western blot analysis measured levels of AMPK, phosphorylation-adenosine 5'-monophosphate (AMP)-activated protein kinase, SIRT1, inducible nitric oxide synthase, cluster of differentiation 86, arginase 1, and interleukin 10. In contrast to the group treated solely with CFA, the cohort receiving both CFA and electroacupuncture demonstrated notable decreases in both thermal hyperalgesia and mechanical allodynia. This was accompanied by a marked enhancement in AMPK phosphorylation levels. AMPK knockdown reversed electroacupuncture's analgesic effects and reduced M2 macrophage/microglial polarization enhancement. Additionally, AMPK knockdown significantly weakened electroacupuncture-induced SIRT1 upregulation, and EX-527 injection attenuated electroacupuncture's facilitation of M2 macrophage/microglial polarization without affecting AMPK phosphorylation levels. Furthermore, combining electroacupuncture with SRT1720 enhanced the analgesic effect of SRT1720. Our findings suggest that AMPK regulation of SIRT1 plays a critical role in electroacupuncture's antinociceptive effect through the promotion of M2 macrophage/microglial polarization.


Asunto(s)
Electroacupuntura , Hiperalgesia , Humanos , Ratas , Ratones , Animales , Hiperalgesia/terapia , Hiperalgesia/inducido químicamente , Proteínas Quinasas Activadas por AMP/uso terapéutico , Microglía , Sirtuina 1 , Ratas Sprague-Dawley , Dolor/inducido químicamente , Analgésicos/uso terapéutico , Adenosina , Macrófagos , Inflamación/inducido químicamente
2.
J Exp Bot ; 75(1): 204-218, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712824

RESUMEN

The degradation of chlorophyll during fruit development is essential to reveal a more 'ripe' color that signals readiness to wild dispersers of seeds and the human consumer. Here, comparative biochemical analysis of developing fruit of Actinidia deliciosa cv. Xuxiang ('XX', green-fleshed) and Actinidia chinensis cv. Jinshi No.1 ('JS', yellow-fleshed) indicated that variation in chlorophyll content is the major contributor to differences in flesh color. Four differentially expressed candidate genes were identified: the down-regulated genes AcCRD1 and AcPOR1 involved in chlorophyll biosynthesis, and the up-regulated genes AcSGR1 and AcSGR2 driving chlorophyll degradation. Prochlorophyllide and chlorophyllide, the metabolites produced by AcCRD1 and AcPOR1, progressively reduced in 'JS', but not in 'XX', indicating that chlorophyll biosynthesis was less active in yellow-fleshed fruit. AcSGR1 and AcSGR2 were verified to be involved in chlorophyll degradation, using both transient expression in tobacco and stable overexpression in kiwifruit. Furthermore, a homeobox-leucine zipper (HD-Zip II), AcHZP45, showed significantly increased expression during 'JS' fruit ripening, which led to both repressed expression of AcCRD1 and AcPOR1 and activated expression of AcSGR1 and AcSGR2. Collectively, the present study indicated that different dynamics of chlorophyll biosynthesis and degradation coordinate the changes in chlorophyll content in kiwifruit flesh, which are orchestrated by the key transcription factor AcHZP45.


Asunto(s)
Actinidia , Humanos , Actinidia/genética , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Front Public Health ; 11: 1269594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026273

RESUMEN

Background: Nurses at the frontline faced high risks of the COVID-19 infection, undertook heavy workloads of patient care, and experienced tremendous stress that often led to compassion fatigue. Aim: This study was to explore the role of positive psychosocial resources (i.e., perceived social support and emotional regulation efficacy) in the relationship between role stress and compassion fatigue. Methods: A cross-sectional design was conducted in Hubei Province, China between May and September 2021. The Role Stress Questionnaire, the Perceived Social Support Scale, the Emotional Regulation Efficacy Scale, and the Professional Quality of Life Scale were used to measure key variables of interest. Nurse socio-demographic data were also collected. Structural equation modeling was used to explore the relationships, including potential mediating effect, among role stress, perceived social support, emotional regulation efficacy, and compassion fatigue. Results: A total of 542 nurses participated in this investigation, and 500 were eventually enrolled in the analysis. The incidence of compassion fatigue among nurses was 94.2%, including 65.8% of nurses reporting at least moderate compassion fatigue. Univariate analysis showed that educational level, marital status, hospital rank, sleep time were the factors affecting compassion fatigue of the nurses. The structural equation modeling revealed that: Role stress had a direct positive effect on compassion fatigue; Perceived social support and emotional regulation efficacy partially mediated the link between role stress and compassion fatigue respectively; And there was a chain mediating role of perceived social support and emotional regulation efficacy between role stress and compassion fatigue. Conclusion: The incidence of compassion fatigue was high during the COVID-19 pandemic among bedside nurses in China. Improving social support and enhancing the efficacy of emotion regulation may help alleviate compassion fatigue directly and/or via buffering the impact of role stress.


Asunto(s)
Agotamiento Profesional , COVID-19 , Desgaste por Empatía , Regulación Emocional , Humanos , Desgaste por Empatía/epidemiología , Desgaste por Empatía/psicología , Agotamiento Profesional/epidemiología , Agotamiento Profesional/psicología , Estudios Transversales , Calidad de Vida/psicología , Pandemias , COVID-19/epidemiología , Apoyo Social
4.
Plant Biotechnol J ; 21(8): 1695-1706, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37161940

RESUMEN

Citrate is a common primary metabolite which often characterizes fruit flavour. The key regulators of citrate accumulation in fruit and vegetables are poorly understood. We systematically analysed the dynamic profiles of organic acid components during the development of kiwifruit (Actinidia spp.). Citrate continuously accumulated so that it became the predominate contributor to total acidity at harvest. Based on a co-expression network analysis using different kiwifruit cultivars, an Al-ACTIVATED MALATE TRANSPORTER gene (AcALMT1) was identified as a candidate responsible for citrate accumulation. Electrophysiological assays using expression of this gene in Xenopus oocytes revealed that AcALMT1 functions as a citrate transporter. Additionally, transient overexpression of AcALMT1 in kiwifruit significantly increased citrate content, while tissues showing higher AcALMT1 expression accumulated more citrate. The expression of AcALMT1 was highly correlated with 17 transcription factor candidates. However, dual-luciferase and EMSA assays indicated that only the NAC transcription factor, AcNAC1, activated AcALMT1 expression via direct binding to its promoter. Targeted CRISPR-Cas9-induced mutagenesis of AcNAC1 in kiwifruit resulted in dramatic declines in citrate levels while malate and quinate levels were not substantially affected. Our findings show that transcriptional regulation of a major citrate transporter, by a NAC transcription factor, is responsible for citrate accumulation in kiwifruit, which has broad implications for other fruits and vegetables.


Asunto(s)
Ácido Cítrico , Factores de Transcripción , Ácido Cítrico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frutas/metabolismo , Malatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
5.
STAR Protoc ; 4(1): 102114, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36861828

RESUMEN

Here, we present an efficient protocol for stereoselective 4N-based domino dimerization in one single step, establishing a 22-membered library of asperazine A analogs. We describe steps for performing a gram-scale 2N-monomer to access the unsymmetrical 4N-dimer. We detail the synthesis of the desired dimer 3a as a yellow solid in 78% yield. This process demonstrates the 2-(iodomethyl)cyclopropane-1,1-dicarboxylate to be an iodine cation source. The protocol is limited to unprotected aniline of 2N-monomer. For complete details on the use and execution of this protocol, please refer to Bai et al. (2022).1.


Asunto(s)
Ácidos Carboxílicos , Dicetopiperazinas , Dimerización , Biblioteca de Genes
6.
J Biomater Sci Polym Ed ; 34(1): 89-107, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35938516

RESUMEN

As a substitute for feed antibiotics, potassium diformate (KDF) can effectively inhibit bacterial overgrowth in the gastrointestinal tract. To avoid the sudden release of KDF in the stomach, this article proposes a new controlled drug delivery system for controlled drug release. In this system, P-type zeolite molecular sieve (Zeolite P) and drug KDF are combined and embedded into the hydrogel microspheres of sodium alginate (ALG) and sodium carboxymethyl cellulose (CMC). In addition, ALG/CMC/Zeolite P composite hydrogel microspheres were prepared with Ca2+ as the crosslinking agent. The structure, composition, morphology, and thermal stability of the hydrogel microspheres were systematically characterized. The effect of the composition ratio of ALG and CMC on the swelling properties of the hydrogel microspheres was also investigated. The results revealed that ALG and CMC form a hydrogen bond and chelate with Ca2+ to form a double crosslinked network structure. Thus, Zeolite P can be effectively encapsulated in the hydrogel microspheres to form a dense three-dimensional network structure. Particularly, Zeolite P helps in improving the thermal stability of microspheres, balance the swelling properties, and control the release of KDF. The drug release results and release kinetics reveal that the ALG/CMC/Zeolite P composite hydrogel has higher drug release in an environment with pH 7.4. The release kinetics follow the Ritger-Peppas model and the first-order kinetic model, which indicates that the composite hydrogel has good specific pH sensitivity. In vitro antibacterial experiments revealed that the composite hydrogel microspheres have broad-spectrum antibacterial activity, and certain inhibitory effects on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis.


Asunto(s)
Hidrogeles , Zeolitas , Hidrogeles/química , Carboximetilcelulosa de Sodio/química , Microesferas , Antibacterianos/farmacología , Concentración de Iones de Hidrógeno , Alginatos/química , Sodio
8.
Biomed Pharmacother ; 155: 113792, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36271569

RESUMEN

BACKGROUND AND PURPOSE: Xin-Ji-Er-Kang (XJEK) is traditional Chinese formula presented excellent protective effects on several heart diseases, but the potential components and targets are still unclear. The aim of this study is to elucidate the effective components of XJEK and reveal its potential mechanism of cardioprotective effect in myocardial ischemia-reperfusion (MIR) injury. EXPERIMENTAL APPROACH: Firstly, the key compounds in XJEK, plasma and heart tissue were analyzed by high resolution mass spectrometry. Bioinformatics studies were also involved to disclose the potential targets and the binding sites for the key compounds. Secondly, to study the protective effect of XJEK on MIR injury and related mechanism, mice subjected to MIR surgery and gavage administered with XJEK for 6 weeks. Cardiac function parameters and apoptosis level of cardiac tissue were assessed. The potential mechanism was further verified by knock down of target protein in vitro. RESULTS: Pharmacokinetics studies showed that Sophora flavescens alkaloids, primarily composed with matrine, are the key component of XJEK. And, through bioinformatic analysis, we speculated JAK2 could be the potential target for XJEK, and could form stable hydrogen bonds with matrine. Administration of XJEK and matrine significantly improved heart function and reduced apoptosis of cardiomyocytes by increasing the phosphorylation of JAK2 and STAT3. The anti-apoptosis effect of XJEK and matrine was also observed on AC16 cells, and could be reversed by co-treatment with JAK2 inhibitor AG490 or knock-down of JAK2. CONCLUSION: XJEK exerts cardioprotective effect on MIR injury, which may be associated with the activation of JAK2/STAT3 signaling pathway.


Asunto(s)
Alcaloides , Daño por Reperfusión Miocárdica , Animales , Ratones , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Biología Computacional , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Miocitos Cardíacos/metabolismo
9.
Orthop Surg ; 14(9): 2350-2360, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35946437

RESUMEN

OBJECTIVE: To compare the functional and alignment outcomes of intramedullary nail fixation using suprapatellar and infrapatellar approaches in treating distal tibial fractures. METHODS: In this retrospective study, 132 patients with distal tibial fractures (87 men, 45 women) ranging in age from 20 to 66 years were treated with intramedullary nails using the suprapatellar (69 patients) or infrapatellar (63 patients) approach. The radiographic alignment outcomes and ankle function were compared between the two groups. Multivariate logistic regression analyses were performed to determine which variety influenced ankle functional scores and whether the suprapatellar approach intervention demonstrated a protective effect. RESULTS: The mean follow-up time was 14.22 ± 2.31 months. The mean sagittal section angle of the fracture in the suprapatellar and infrapatellar approach groups was 3.20° ± 1.20° and 5.31° ± 1.23°, respectively (P < 0.001). The mean coronal section angle was 3.51° ± 0.89° and 5.42° ± 1.05°, respectively (P < 0.001). Three patients (4.3%) in the suprapatellar approach group and 15 patients (23.8%) in the infrapatellar approach group had poor fracture reduction (P < 0.001). The mean hind foot functional score and ankle pain score were 95.91 ± 4.70 and 35.91 ± 4.70 points, respectively, in the suprapatellar approach group and 85.20 ± 5.61 and 25.20 ± 5.61 points, respectively, in the infrapatellar approach group (P < 0.001 for both). In the comparison of ankle function, the multivariate logistic regression analyses demonstrated that the odds ratio in the suprapatellar approach group was about 7 times that in the infrapatellar approach group (odds ratio, 7.574; 95% confidence interval, 2.148-28.740; P = 0.002). Of the variants measured, the statistically significant risk factors for poor ankle function were AO type A3 (P = 0.016) and diabetes mellitus (P = 0.006). Sex and the operation interval were not statistically significant risk factors for poor ankle function. CONCLUSION: Intramedullary nailing using the suprapatellar approach facilitates simple fracture reduction, excellent postoperative fracture alignment, and few complications, giving it obvious advantages over the conventional infrapatellar approach. Additionally, the suprapatellar approach is a prognostic factor associated with postoperative ankle joint function.


Asunto(s)
Fijación Intramedular de Fracturas , Fracturas de la Tibia , Adulto , Anciano , Clavos Ortopédicos , Femenino , Fijación Intramedular de Fracturas/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Rótula/diagnóstico por imagen , Rótula/cirugía , Estudios Retrospectivos , Fracturas de la Tibia/diagnóstico por imagen , Fracturas de la Tibia/etiología , Fracturas de la Tibia/cirugía , Resultado del Tratamiento , Adulto Joven
10.
Nat Ecol Evol ; 6(9): 1354-1366, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817827

RESUMEN

Triploids are rare in nature because of difficulties in meiotic and gametogenic processes, especially in vertebrates. The Carassius complex of cyprinid teleosts contains sexual tetraploid crucian carp/goldfish (C. auratus) and unisexual hexaploid gibel carp/Prussian carp (C. gibelio) lineages, providing a valuable model for studying the evolution and maintenance mechanism of unisexual polyploids in vertebrates. Here we sequence the genomes of the two species and assemble their haplotypes, which contain two subgenomes (A and B), to the chromosome level. Sequencing coverage analysis reveals that C. gibelio is an amphitriploid (AAABBB) with two triploid sets of chromosomes; each set is derived from a different ancestor. Resequencing data from different strains of C. gibelio show that unisexual reproduction has been maintained for over 0.82 million years. Comparative genomics show intensive expansion and alterations of meiotic cell cycle-related genes and an oocyte-specific histone variant. Cytological assays indicate that C. gibelio produces unreduced oocytes by an alternative ameiotic pathway; however, sporadic homologous recombination and a high rate of gene conversion also exist in C. gibelio. These genomic changes might have facilitated purging deleterious mutations and maintaining genome stability in this unisexual amphitriploid fish. Overall, the current results provide novel insights into the evolutionary mechanisms of the reproductive success in unisexual polyploid vertebrates.


Asunto(s)
Carpas , Poliploidía , Animales , Genoma , Carpa Dorada/genética , Reproducción/genética
11.
J Org Chem ; 87(13): 8764-8772, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686467

RESUMEN

An efficient and general base-promoted reaction of 1,1-dichloroalkenes with secondary sulfonamides and amides for the synthesis of (Z)-ß-chloro-enamides has been described. This reaction exhibits functional group tolerance under simple and mild conditions. Mechanistic study indicated that a stereoselective trans-hydroamidation of alkynyl chlorides generated in situ from 1,1-dichloroalkenes was the key step.


Asunto(s)
Amidas , Cloruros , Catálisis , Estereoisomerismo
12.
Anal Chem ; 94(27): 9578-9585, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35770422

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) has been widely applied in many fields as a sensitive vibrational fingerprint technique. However, SERS faces challenges in quantitative analysis due to the heterogeneity of hot spots. An internal standard (IS) strategy has been employed for correcting the variation of hot spots. However, the method suffers from limitations due to the competitive adsorption between the IS and the target analyte. In this work, we combined the IS strategy with the 3D hybrid nanostructures to develop a bifunctional SERS substrate. The substrate had two functional units. The bottom self-assembly layer consisted of Au@IS@SiO2 nanoparticles, which provided a stable reference signal and functioned as the calibration unit. The top one consisted of appropriate-sized Au octahedrons for the detection of target analytes, which was the detection unit. Within the 3D hybrid nanostructure, the calibration unit improved the SERS performance of the detection unit, which was demonstrated by the 6-fold increase of SERS intensity when compared with the 2D substrate. Meanwhile, the reproducibility of the detection was greatly improved by correcting the hot spot changes through the calibration unit. Two biomedical molecules of cotinine and creatinine in ultrapure water and artificial urine, respectively, were sensitively determined by the 3D hybrid substrate. We expect that the developed bifunctional 3D substrate will open up new ways to advance the applications of SERS.


Asunto(s)
Oro , Nanopartículas del Metal , Calibración , Oro/química , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Dióxido de Silicio , Espectrometría Raman/métodos
13.
Artículo en Inglés | MEDLINE | ID: mdl-35451952

RESUMEN

A Gram-stain-positive, anaerobic, spore-forming, rod-shaped (0.4-0.6 µm×2.5-3.2 µm), flagellated bacterium, designated strain YB-6T, was isolated from activated sludge of an anaerobic tank at Weizhou marine oil mining wastewater treatment plant in Beihai, Guangxi, PR China. The culture conditions were 25-45 °C (optimum, 37 °C), pH 4-12 (pH 7.0) and NaCl concentration of 0-7 % w/v (0%). Strain YB-6T grew slowly in petroleum wastewater and removed 68.2 % of the total organic carbon in petroleum wastewater within 10 days. Concentrations of naphthalene, anthracene and phenanthrene at an initial concentration of 50 mg l-1 were reduced by 32.8, 40.4 and 14.6 %, respectively, after 7 days. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain YB-6T belongs to Clostridium cluster I and is most closely related to Clostridium uliginosum CK55T (98.5 % similarity). The genome size of strain YB-6T was 3.96 Mb, and the G+C content was 26.5 mol%. The average nucleotide identity value between strain YB-6T and C. uliginosum CK55T was 81.9 %. The major fatty acids in strain YB-6T were C14 : 0 FAME, C16 : 0 FAME and summed feature 4 (unknown 14.762 and/or C15 : 2 FAME). The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, five unidentified aminophospholipids, one unidentified glycolipid and one unidentified aminolipid. Diaminopimelic acid was not detected in the strain YB-6T cell walls. Whole-cell sugars mainly consisted of ribose and galactose. Based on the results of phenotypic and genotypic analyses, strain YB-6T represents a novel species of the genus Clostridium, for which the name Clostridium weizhouense sp. nov. is proposed. The type strain is YB-6T (=GDMCC 1.2529T=JCM 34754T).


Asunto(s)
Petróleo , Aguas del Alcantarillado , Anaerobiosis , Bacterias Anaerobias/genética , Técnicas de Tipificación Bacteriana , Composición de Base , China , Clostridium , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología
14.
Ecotoxicol Environ Saf ; 234: 113329, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35255253

RESUMEN

Copper is a trace element necessary for the normal functioning of organisms, but excessive copper contents may be toxic to the heart. The goal of this study was to investigate the role of excessive copper accumulation in mitochondrial damage and cell apoptosis inhibition. In vivo, the heart copper concentration and cardiac troponin I (c-TnI) and N-terminal forebrain natriuretic peptide (NT-pro-BNP) levels increased in the copper-laden model group compared to those of the control group. Histopathological and ultrastructural observations revealed that the myocardial collagen volume fraction (CVF), perivascular collagen area (PVCA) and cardiomyocyte cross-sectional area (CSA) were markedly elevated in the copper-laden model group compared with the control group. Furthermore, transmission electron microscopy (TEM) showed that the mitochondrial double-layer membrane was incomplete in the copper-laden model groups. Furthermore, cytochrome C (Cyt-C) expression was downregulated in mitochondria but upregulated in the cytoplasm in response to copper accumulation. In addition, Bcl-2 expression decreased, while Bax and cleaved caspase-3 levels increased. These results indicate that copper accumulation in cardiomyocyte mitochondria induces mitochondrial injury, and Cyt-C exposure and induces apoptosis, further resulting in heart damage.

15.
J Am Chem Soc ; 144(13): 5750-5755, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35289615

RESUMEN

Daphenylline is a structurally unique member of the triterpenoid Daphniphyllum natural alkaloids, which exhibit intriguing biological activities. Six total syntheses have been reported, five of which utilize aromatization approaches. Herein, we report a concise protecting-group-free total synthesis by means of a novel intramolecular oxidative dearomatization reaction, which concurrently generates the critical seven-membered ring and the quaternary-containing vicinal stereocenters. Other notable transformations include a tandem reductive amination/amidation double cyclization reaction, to assemble the cage-like architecture, and installation of the other two chiral stereocenters via a highly enantioselective rhodium-catalyzed challenging hydrogenation of the diene intermediate (90% e.e.) and an unprecedented remote acid-directed Mukaiyama-Michael reaction of the complex benzofused cyclohexanone (13:1 d.r.).


Asunto(s)
Alcaloides , Ciclización , Estrés Oxidativo , Estereoisomerismo
16.
New Phytol ; 235(2): 630-645, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35348217

RESUMEN

Anthocyanins are visual cues for pollination and seed dispersal. Fruit containing anthocyanins also appeals to consumers due to its appearance and health benefits. In kiwifruit (Actinidia spp.) studies have identified at least two MYB activators of anthocyanin, but their functions in fruit and the mechanisms by which they act are not fully understood. Here, transcriptome and small RNA high-throughput sequencing were used to comprehensively identify contributors to anthocyanin accumulation in kiwifruit. Stable overexpression in vines showed that both 35S::MYB10 and MYB110 can upregulate anthocyanin biosynthesis in Actinidia chinensis fruit, and that MYB10 overexpression resulted in anthocyanin accumulation which was limited to the inner pericarp, suggesting that repressive mechanisms underlie anthocyanin biosynthesis in this species. Furthermore, motifs in the C-terminal region of MYB10/110 were shown to be responsible for the strength of activation of the anthocyanic response. Transient assays showed that both MYB10 and MYB110 were not directly cleaved by miRNAs, but that miR828 and its phased small RNA AcTAS4-D4(-) efficiently targeted MYB110. Other miRNAs were identified, which were differentially expressed between the inner and outer pericarp, and cleavage of SPL13, ARF16, SCL6 and F-box1, all of which are repressors of MYB10, was observed. We conclude that it is the differential expression and subsequent repression of MYB activators that is responsible for variation in anthocyanin accumulation in kiwifruit species.


Asunto(s)
Actinidia , MicroARNs , Actinidia/genética , Actinidia/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo
17.
Phytomedicine ; 91: 153675, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34332285

RESUMEN

BACKGROUND: Xin-Ji-Er-Kang (XJEK) as a herbal formula of traditional Chinese medicine (TCM) has shown the protective effects on myocardial function as well as renal function in mouse models of myocardial infarction. HYPOTHESIS/PURPOSE: We investigated the effects of XJEK on cardiovascular- and renal-function in a heart failure mouse model induced by high salt (HS) and the associated mechanisms. STUDY DESIGN: For the purpose of assessing the effects of XJEK on a hypertensive heart failure model, mice were fed with 8% high salt diet. XJEK was administered by oral gavage for 8 weeks. Cardiovascular function parameters, renal function associated biomarkers and XJEK's impact on renin-angiotensin-aldosterone system (RAAS) activation were assessed. To determine the underlying mechanism, the calpain1/junctophilin-2 (JP2)/sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) pathway was further studied in AC16 cells after angiotensin II-challenge or after calpastatin small interfering RNA (siRNA) transfection. RESULTS: Mice on HS-diet exhibited hypertensive heart failure along with progressive kidney injury. Similar to fosinopril, XJEK ameliorated hypertension, cardiovascular-and renal- dysfunction in mice of HS-diet group. XJEK inhibited HS-induced activation of RAAS and reversed the abnormal expression pattern of calpain1and JP2 protein in heart tissues. XJEK significantly improved cell viability of angiotensin II-challenged AC16 cells. Moreover, XJEK's impact on calpain1/JP2 pathway was partly diminished in AC16 cells transfected with calpastatin siRNA. CONCLUSION: XJEK was found to exert cardiovascular- and renal protection in HS-diet induced heart failure mouse model. XJEK inhibited HS-diet induced RAAS activation by inhibiting the activity and expression of calpain1 and protected the junctional membrane complex (JMC) in cardiomyocytes.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca , Hipertensión , Animales , Presión Sanguínea , Calpaína , Insuficiencia Cardíaca/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Riñón/efectos de los fármacos , Riñón/fisiología , Proteínas de la Membrana , Ratones , Proteínas Musculares , Estrés Oxidativo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Transducción de Señal
18.
New Phytol ; 232(1): 237-251, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34137052

RESUMEN

Ethylene plays an important role in regulating fruit ripening by triggering dynamic changes in expression of ripening-associated genes, but the functions of many of these genes are still unknown. Here, a methionine sulfoxide reductase gene (AdMsrB1) was identified by transcriptomics-based analysis as the gene most responsive to ethylene treatment in ripening kiwifruit. The AdMsrB1 protein exhibits a stereospecific activity toward the oxidative stress-induced R enantiomer of methionine sulfoxide (MetSO), reducing it to methionine (Met). Stable overexpression of AdMsrB1 in kiwifruit significantly increased the content of free Met and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, and increased ethylene production. Dual-luciferase assays indicated that the AdMsrB1 promoter was not directly upregulated by ethylene treatment but was modulated by two ethylene-inducible NAM/ATAF/CUC transcription factors (AdNAC2 and AdNAC72) that bind directly to the AdMsrB1 promoter. Overexpression of AdNAC72 in kiwifruit not only enhanced AdMsrB1 expression, but also increased free Met and ACC content and ethylene production rates. This finding establishes an unexpected regulatory loop that enhances ethylene production and the concentration of its biosynthetic intermediates.


Asunto(s)
Frutas , Factores de Transcripción , Etilenos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Metionina , Metionina Sulfóxido Reductasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
World J Clin Cases ; 9(15): 3498-3505, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34046450

RESUMEN

Cholesterol gallstone (CG) is a common, frequent biliary system disease in China, with a complex and multifactorial etiology. Declined gallbladder motility reportedly contributes to CG pathogenesis. Furthermore, interstitial Cajal-like cells (ICLCs) are reportedly present in human and guinea pig gallbladder tissue. ICLCs potentially contribute to the regulation of gallbladder motility, and aberrant conditions involving the loss of ICLCs and/or a reduction in its pacing potential and reactivity to cholecystokinin may promote CG pathogenesis. This review discusses the association between ICLCs and CG pathogenesis and provides a basis for further studies on the functions of ICLCs and the etiologies of CG.

20.
World J Gastrointest Surg ; 12(5): 226-235, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32551028

RESUMEN

BACKGROUND: Loss and/or dysfunction of interstitial Cajal-like cells (ICLCs) in the gallbladder may promote cholesterol gallstone formation by decreasing gallbladder motility. AIM: To study the effect of cholesterol on the proliferation and apoptosis of ICLCs from guinea pig gallbladders. METHODS: Guinea pig gallbladder ICLCs were isolated and cultured in vitro. The cells were exposed to cholesterol solutions at different concentrations (0, 25, 50, and 100 mg/L) for 24 h. Then, cell proliferation was detected by the CCK-8 method and the apoptosis rate was detected by flow cytometry. Further, the expression of the c-Kit protein was detected by Western blot and the expression level of c-Kit mRNA in the cells was detected by real-time quantitative PCR. RESULTS: After ICLCs were cultured with cholesterol at concentrations of 25, 50, and 100 mg/L, the proliferation rates decreased significantly (P < 0.05), whereas the apoptosis rates increased significantly (P < 0.05). Moreover, the expression of c-Kit protein and mRNA decreased significantly (P < 0.05). CONCLUSION: High cholesterol concentrations can inhibit the proliferation of ICLCs and promote apoptosis. This decrease in the ICLC proliferation rate might be caused by the inhibition of the stem cell factor/c-Kit signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA