Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 90(1): 013902, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30709196

RESUMEN

The crystallographic texture of polycrystalline materials is the result of how these materials are processed and what external forces materials have experienced. Neutron and X-ray diffraction are standard methods to characterize global crystallographic textures. However, conventional neutron and X-ray texture analyses rely on pole figure inversion routines derived from intensity analysis of individual reflections or powder Rietveld analysis to reconstruct and model the orientation distribution from slices through reciprocal space. In this work, we describe an original approach to directly probe the crystallographic texture information of rolled aluminum from the intensity distribution in 3-dimensional reciprocal space volumes measured simultaneously. Using the TOPAZ time-of-flight Laue neutron diffractometer, reciprocal space analysis allowed determination of "pole spheres" with <1° angular resolution. These pole spheres are compared with reconstructed pole figures from classic texture analysis.

2.
Rev Sci Instrum ; 89(9): 092802, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30278686

RESUMEN

The nascent suite of single-crystal neutron diffractometers at the Oak Ridge National Laboratory has no equal at any other neutron scattering facility worldwide and offers the potential to re-assert single-crystal diffraction using neutrons as a significant tool to study nuclear and magnetic structures of small unit cell crystals, nuclear structures of macromolecules, and diffuse scattering. Signature applications and features of single-crystal neutron diffraction are high resolution nuclear structure analysis, magnetic structure and spin density determinations, contrast variation (particularly D2O/H2O) for nuclear structural studies, lack of radiation damage when using crystals of biological molecules such as proteins, and the fidelity to measure nuclear and magnetic diffuse scattering with elastic discrimination.

3.
Rev Sci Instrum ; 89(9): 092801, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30278687

RESUMEN

Wide Angle Neutron Diffractometer Squared is a high-flux versatile diffractometer with a 2-Dimensional Position Sensitive Detector at the High Flux Isotope Reactor. The instrument has strengths in both powder and single crystal diffraction. It is a unique instrument in the neutron scattering landscape of North America, and its capabilities are at least equal to similar instruments in the world.

4.
Rev Sci Instrum ; 89(9): 092701, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30278771

RESUMEN

The suite of neutron powder diffractometers at Oak Ridge National Laboratory (ORNL) utilizes the distinct characteristics of the Spallation Neutron Source and High Flux Isotope Reactor to enable the measurements of powder samples over an unparalleled regime at a single laboratory. Full refinements over large Q ranges, total scattering methods, fast measurements under changing conditions, and a wide array of sample environments are available. This article provides a brief overview of each powder instrument at ORNL and details the complementarity across the suite. Future directions for the powder suite, including upgrades and new instruments, are also discussed.

5.
Nature ; 540(7634): 559-562, 2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-27919078

RESUMEN

A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed 'spinons'). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

6.
J Phys Condens Matter ; 27(25): 256003, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26058062

RESUMEN

Spin dynamics in the intermediate ordered phases (between 4 and 9 K) in Ni3V2O8 have been studied with inelastic neutron scattering. It is found that the spin waves are very diffuse, indicative of short lived correlations and the coexistence of paramagnetic moments with the long-range ordered state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA