Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 220: 118615, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35617788

RESUMEN

Legionella occurrence monitoring is not required by United States Environmental Protection Agency (USEPA) drinking water regulations, and few occurrence studies exist for Legionella in source water or distribution systems. Legionella occurrence was monitored in Las Vegas Valley (Las Vegas, Nevada, USA) drinking water sources, including non-treated surface water, seasonal groundwater (61 wells, before and after chlorination), finished water (after treatment at water treatment facilities), and chlorinated distribution system water (at 9 reservoirs and 75 sample locations throughout the network). Legionella pneumophila was detected at least once at each of the wells sampled before chlorination, with an overall positivity rate of 38% (343/908). During well start-up (time<2 hours; turbidity>3 NTU), L. pneumophila concentrations averaged 2,792±353 MPN/100 mL, with a median of 105 MPN/100 mL, and range of <1 to 90,490 MPN/100 mL across 61 seasonally operated (typically April-October) groundwater wells. After initial flushing (turbidity<3 NTU), the average concentration decreased by more than two orders of magnitude to 24±3 MPN/100 mL but ranged from <1 to >2,273 MPN/100 mL. This trend indicates that stagnation (up to 391 days) contributed to greater initial concentrations, and flushing alone was incapable of complete L. pneumophila elimination. L. pneumophila concentration was significantly, positively correlated with total aqueous adenosine triphosphate (ATP) (p<0.00001, r=0.41-0.71), turbidity (p<0.00001, r=0.27-0.51), orthophosphate (p=0.35-0.076, r=0.51-0.59), and pump depth (p=0.032, r=0.40). During a full-scale assessment of chlorination (Ct=0.7 to 10.5 mg-min/L; T=26.6-28.1°C), substantial reduction of Legionella spp. (up to 2.5 logs) was observed; although, detectable concentrations were still measured. Extrapolating from a Chick-Watson model (log inactivation=0.28*(Ct); R2=0.87) constructed from the full-scale chlorination results, 3- and 4-log inactivation in Las Vegas Valley groundwater would require 10.8 and 14.3 mg-min/L, respectively; at least 3-log inactivation was required to bring Legionella spp. to below detection at the studied well. Chlorine exposure (Ct=0.1 to 10.9 mg-min/L) at most wells discharging directly to the distribution system was insufficient to fully inactivate Legionella spp. After discussing these findings with the state regulatory agency, direct-to-distribution wells (38 of 61 wells) remained out of operation; the distribution system, wells, and reservoirs were monitored for Legionella and chlorine residual, and additional treatment scenarios were identified for further evaluation. Legionella was either not detected or was well controlled in surface water, finished effluent from the drinking water treatment plant, chlorinated reservoirs, and the chlorinated distribution system. This study emphasizes the importance of utility-driven, non-regulatory research in order to protect public health and also identifies the need for greater occurrence monitoring and guidance for Legionella in groundwater supplies.


Asunto(s)
Agua Potable , Agua Subterránea , Legionella pneumophila , Legionella , Cloro , Microbiología del Agua , Abastecimiento de Agua
2.
Water Res X ; 10: 100086, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33398255

RESUMEN

The World Health Organization (WHO) classified COVID-19 as a global pandemic, with the situation ultimately requiring unprecedented measures to mitigate the effects on public health and the global economy. Although SARS-CoV-2 (the virus responsible for COVID-19) is primarily respiratory in nature, multiple studies confirmed its genetic material could be detected in the feces of infected individuals, thereby highlighting sewage as a potential indicator of community incidence or prevalence. Numerous wastewater surveillance studies subsequently confirmed detection of SARS-CoV-2 RNA in wastewater and wastewater-associated solids/sludge. However, the methods employed in early studies vary widely so it is unclear whether differences in reported concentrations reflect true differences in epidemiological conditions, or are instead driven by methodological artifacts. The current study aimed to compare the performance of virus recovery and detection methods, detect and quantify SARS-CoV-2 genetic material in two Southern Nevada sewersheds from March-May 2020, and better understand the potential link between COVID-19 incidence/prevalence and wastewater concentrations of SARS-CoV-2 RNA. SARS-CoV-2 surrogate recovery (0.34%-55%) and equivalent sample volume (0.1 mL-1 L) differed between methods and target water matrices, ultimately impacting method sensitivity and reported concentrations. Composite sampling of influent and primary effluent resulted in a ∼10-fold increase in concentration relative to corresponding grab primary effluent samples, presumably highlighting diurnal variability in SARS-CoV-2 signal. Detection and quantification of four SARS-CoV-2 genetic markers (up to ∼106 gene copies per liter), along with ratios of SARS-CoV-2 to pepper mild mottle virus (PMMoV), exhibited comparability with public health data for two sewersheds in an early phase of the pandemic. Finally, a wastewater model informed by fecal shedding rates highlighted the potential significance of new cases (i.e., incidence rather than prevalence) when interpreting wastewater surveillance data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA