RESUMEN
Variations in the venous drainage of the central nervous system can have imaging and clinical findings that mimic pathology, presenting a challenge for neuroimagers and clinicians. Patients with these variants may undergo unnecessary testing, and patients with pathology may receive delayed diagnoses because of overlap with benign findings. Consequently, the accurate identification of venous variations on cross-sectional imaging and angiography and their potential causes are critical for differentiating benign imaging variants from potential pathologic processes requiring further evaluation. For example, in the epidural space, benign dilation of the epidural venous plexus may be mistaken for evidence of a fistula, abscess, or metastasis. Hypoplasia of a dural venous sinus or an arachnoid granulation may mimic venous sinus thrombosis. The superior ophthalmic vein may demonstrate benign dilation in intubated patients, mimicking thrombosis, increased intracranial pressure, orbital varix, inflammatory pseudotumor, or other conditions. Furthermore, certain venous variations, such as the occipital sinus or emissary veins, may complicate surgery or herald pathology and should be reported. In addition, some supposedly benign variations, such as the developmental venous anomaly, can be complicated by pathology. The objective of this review article is to provide a descriptive and pictorial review of common anatomic and physiologic variations in the venous drainage system of the brain, spine, and orbits that can mimic pathology. Neuroimaging findings of related pathologies and differences in clinical presentations will also be discussed to assist in the approach to differential diagnosis.
Asunto(s)
Encéfalo/diagnóstico por imagen , Venas Cerebrales/diagnóstico por imagen , Senos Craneales/diagnóstico por imagen , Neuroimagen/métodos , Malformaciones Vasculares del Sistema Nervioso Central/diagnóstico por imagen , Hematoma Epidural Craneal/diagnóstico por imagen , Hematoma Espinal Epidural/diagnóstico por imagen , HumanosRESUMEN
OBJECTIVE: The purpose of this study was to determine whether unenhanced MRI without sedation is a feasible substitute for dimercaptosuccinic acid (DMSA) scintigraphy in the detection of renal scars in pediatric patients. SUBJECTS AND METHODS: Patients scheduled for 99mTc-labeled DMSA scintigraphy for assessment of possible renal scars were recruited to undergo unenhanced MRI (free-breathing fat-suppressed T2-weighted single-shot turbo spin-echo and T1-weighted gradient-echo imaging, 13 minutes' total imaging time). Scintigraphic and MRI studies were evaluated by two independent blinded specialty-based radiologists. For each imaging examination, readers identified scars in upper, middle, and lower kidney zones and rated their diagnostic confidence and the quality of each study. The scintigraphic readers' consensus score opinion for the presence of scars was considered the reference standard. RESULTS: DMSA scintigraphy showed scarring in 19 of the 78 (24.4%) evaluated zones and MRI in 18 of the 78 (23.1%). The two MRI readers found mean sensitivities of 94.7% and 89.5%, identical specificities of 100%, and diagnostic accuracies of 98.7% and 97.4%. Interobserver agreement was 98.7% for MRI and 92.3% for DMSA scintigraphy. The MRI readers were significantly more confident in determining the absence rather than the presence of scars (p = 0.02). MRI readers were more likely to rate study quality as excellent (84.6%) than were the scintigraphic readers (57.7%) (p = 0.024). CONCLUSION: Unenhanced MRI has excellent sensitivity, specificity, diagnostic accuracy, and interobserver agreement for detecting renal scars in older children who do not need sedation. It may serve as a substitute modality, especially when DMSA is not available.