Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polim Med ; 54(1): 59-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533623

RESUMEN

BACKGROUND: Today's growing demand for advanced and sustainable polyester materials is driven by an increasing awareness of the environmental impact of traditional materials, emphasizing the need for eco-friendly alternatives. Sustainability has become central in materials development, including the biomedical area, where biobased and environmentally friendly solutions are a rapidly growing field. OBJECTIVES: This research aims to comprehensively evaluate a new enzymatically catalyzed furan-based copolymer, poly(decamethylene furanoate)-co-(dilinoleic furanoate) (PDF-DLF), with a 70-30 wt% hard-to-soft segment ratio. Then, its performance across medical applications is explored, with a particular focus on its potential as a nanofibrous scaffolding material. MATERIAL AND METHODS: PDF-DLF was synthesized from biobased monomers using Candida antarctica lipase B (CAL-B) as the biocatalyst. Material characterization included dynamic mechan­ical thermal analysis (DMTA) to assess the mechanical behavior and thermal properties. Enzymatic degradation studies determined biodegradability, while cytotoxicity tests established in vitro biocompatibility. The copolymer was electrospun into nanofibers, with scanning electron microscopy (SEM) employed to analyze their morphology. RESULTS: PDF-DLF displays mechanical and thermal properties indicating high storage modulus and 2 main temperature transitions. Enzymatic degradation studies and cytotoxicity assessments confirm biodegradability and in vitro biocompatibility. Electrospinning successfully transformed the copolymer into nanofibers with diameters ranging from 500 nm to 700 nm. CONCLUSIONS: This study significantly advances our understanding of sustainable polyesters with versatile processing capabilities. The successful electrospinning highlights its potential as a biodegradable scaffold for medical engineering, supported by biocompatibility and sufficient mechanical properties. It opens new opportunities for sustainable materials in critical biomedical industries, including tissue engineering.


Asunto(s)
Materiales Biocompatibles , Proteínas Fúngicas , Furanos , Lipasa , Furanos/química , Lipasa/química , Materiales Biocompatibles/química , Polímeros/química , Ensayo de Materiales , Nanofibras/química
2.
Polymers (Basel) ; 14(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35267825

RESUMEN

Cardiac surgical approaches require the development of new materials regardless of the polyurethanes used for pulsatile blood pumps; therefore, an innovative biomaterial, a copolymer of poly(ethylene terephthalate) and dimer fatty acid (dilinoleic acid) modified with D-glucitol, hereafter referred to as PET/DLA, has been developed, showing non-hemolytic and atrombogenic properties and resistance to biodegradation. The aim of this work was to evaluate in vivo inflammatory responses to intramuscular implantation of PET/DLA biomaterials of different compositions (hard to soft segments). Two copolymers containing 70 and 65 wt.% of hard segments, as in poly(ethylene terephthalate) and dilinoleic acid in soft segments modified with D-glucitol, were used for implantation tests to monitor tissue response. Medical grade polyurethanes Bionate II 90A and Bionate II 55 were used as reference materials. After euthanasia of animals (New Zealand White rabbits, n = 49), internal organs and tissues that contacted the material were collected for histopathological examination. The following parameters were determined: peripheral blood count, blood smear with May Grunwald-Giemsa staining, and serum C-reactive protein (CRPP). The healing process observed at the implantation site of the new materials after 12 weeks indicated normal progressive collagenization of the scar, with an indication of the inflammatory-resorptive process. The analysis of the chemical structure of explants 12 weeks after implantation showed good stability of the tested copolymers in contact with living tissues. Overall, the obtained results indicate great potential for PET/DLA in medical applications; however, final verification of its applicability as a structural material in prostheses is needed.

3.
Macromol Biosci ; 16(7): 944-57, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27188816

RESUMEN

Biosensing is an important and rapidly developing field, with numerous potential applications in health care, food processing, and environmental control. Polymer-graphene nanocomposites aim to leverage the unique, attractive properties of graphene by combining them with those of a polymer matrix. Molecular imprinted polymers, in particular, offer the promise of artificial biorecognition elements. A variety of polymers, including intrinsically conducting polymers (polyaniline, polypyrrole), bio-based polymers (chitosan, polycatechols), and polycationic polymers (poly(diallyldimethylammonium chloride), polyethyleneimine), have been utilized as matrices for graphene-based nanofillers, yielding sensitive biosensors for various biomolecules, such as proteins, nucleic acids, and small molecules.


Asunto(s)
Técnicas Biosensibles/tendencias , Grafito/química , Nanocompuestos/química , Humanos , Impresión Molecular , Ácidos Nucleicos/aislamiento & purificación , Proteínas/aislamiento & purificación
4.
Polim Med ; 46(1): 79-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28397422

RESUMEN

Heart assisting devices have become a standard element in clinical practice and provide support for the traditional methods of treating heart disease. Regardless of the construction of VAD (ventricular assist devices), there are crucial requirements that have to be met by the construction materials: high purity, desired physical, chemical and mechanical properties, easy fabrication and high stability and susceptibility to sterilization. They must not cause thrombosis, destroy cellular elements, alter plasma protein, destroy enzymes, deplete electrolytes, cause immune response and cancer, and must not produce toxic and allergic reactions, when they are applied in direct contact with biological tissues and fluids. This paper provides an overview of the polymeric materials as construction materials for cardiovascular support systems, focusing on the group of thermoplastic elastomers, mainly polyurethane and polyester based ones. It also highlights the advantages and disadvantages of currently used materials and the progress in the design of new materials with potential application in the biomedical field.


Asunto(s)
Materiales Biocompatibles , Elastómeros , Corazón Auxiliar , Humanos , Poliésteres , Poliuretanos
5.
Carbohydr Polym ; 133: 52-60, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26344254

RESUMEN

The aim of the study was to assess the influence of rotating magnetic field (RMF) on production rate and quality parameters of bacterial cellulose synthetized by Glucanacetobacter xylinus. Bacterial cultures were exposed to RMF (frequency f=50Hz, magnetic induction B=34mT) for 72h at 28°C. The study revealed that cellulose obtained under RMF influence displayed higher water absorption, lower density and less interassociated microfibrils comparing to unexposed control. The application of RMF significantly increased the amount of obtained wet cellulose pellicles but decreased the weight and thickness of dry cellulose. Summarizing, the exposure of cellulose-synthesizing G. xylinus to RMF alters cellulose biogenesis and may offer a new biotechnological tool to control this process. As RMF-modified cellulose displays better absorbing properties comparing to non-modified cellulose, our finding, if developed, may find application in the production of dressings for highly exudative wounds.


Asunto(s)
Celulosa/biosíntesis , Gluconacetobacter xylinus/metabolismo , Campos Magnéticos , Rotación , Glucosa/metabolismo
6.
J Funct Biomater ; 5(4): 211-31, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25347356

RESUMEN

In this paper, we discuss the synthesis and self-assembling behavior of new copolymers derived from fatty acid/amino acid components, namely dimers of linoleic acid (DLA) and tyrosine derived diphenols containing alkyl ester pendent chains, designated as "R" (DTR). Specific pendent chains were ethyl (E) and hexyl (H). These poly(aliphatic/aromatic-ester-amide)s were further reacted with poly(ethylene glycol) (PEG) and poly(ethylene glycol methyl ether) of different molecular masses, thus resulting in ABA type (hydrophilic-hydrophobic-hydrophilic) triblock copolymers. We used Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies to evaluate the chemical structure of the final materials. The molecular masses were estimated by gel permeation chromatography (GPC) measurements. The self-organization of these new polymeric systems into micellar/nanospheric structures in aqueous environment was evaluated using ultraviolet/visible (UV-VIS) spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The polymers were found to spontaneously self-assemble into nanoparticles with sizes in the range 196-239 nm and critical micelle concentration (CMC) of 0.125-0.250 mg/mL. The results are quite promising and these materials are capable of self-organizing into well-defined micelles/nanospheres encapsulating bioactive molecules, e.g., vitamins or antibacterial peptides for antibacterial coatings on medical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA