RESUMEN
Introduction: Tropical dry forests and mangroves, two of the world's most endangered ecosystems, each host a different set of environmental conditions which may support unique assemblages of species. However, few studies have looked at the unique vertebrate biodiversity in regions where both habitats occur side-by-side. Objective: To assess the vertebrate diversity and patterns of habitat usage in a mangrove and tropical dry forest matrix in an unprotected region of Northwestern Costa Rica. Methods: The study was conducted in a 7 km2 matrix of mangrove and tropical dry forests between Cabuyal and Zapotillal bays in Northwestern Costa Rica, south of Santa Rosa National Park. From September 2017 to March 2018, we used 13 automatic camera traps over 1 498 trap days to capture species utilizing the region and assess their patterns of habitat usage both spatially and temporally. Results: Seventy vertebrate species from 42 families in 27 orders were detected, including several globally threatened species. Over half of all species were detected in only one habitat, particularly amongst avian (78 %) and mammalian (42 %) species. Tropical dry forests hosted the greatest number of unique species and supported a greater percentage of herbivores than mangrove or edge habitats, which were dominated by carnivorous and omnivorous species. Mean detections per camera trap of all species increased significantly from the coldest and wettest month (Oct) to the hottest and driest months (Jan & Feb) in tropical dry forests. Sample-based rarefaction analysis revealed that survey length was sufficient to sample the tropical dry forest and edge habitats, though mangroves require further sampling. Conclusions: Taxa found to utilize different forest types may utilize each for different stages of their life cycle, moving between areas as environmental conditions change throughout the year. General patterns of global biodiversity favoring carnivore and omnivore usage of mangrove forests was confirmed in our study.
Introducción: Los bosques secos tropicales y los manglares, dos de los ecosistemas más amenazados del mundo, albergan cada uno un grupo de condiciones ambientales que pueden albergar conjuntos únicos de especies. Sin embargo, pocos estudios han analizado la biodiversidad única de vertebrados en regiones donde ambos hábitats se encuentran uno al lado del otro. Objetivo: Evaluar la diversidad de vertebrados y los patrones de uso del hábitat en una matriz de manglar y bosque seco tropical en una región no protegida del noroeste de Costa Rica. Métodos: El estudio se realizó en una matriz de 7 km2 de manglares y bosques secos tropicales en las bahías de Cabuyal y Zapotillal en el noroeste de Costa Rica, al sur del Parque Nacional Santa Rosa. De septiembre 2017 a marzo 2018, utilizamos 13 cámaras trampa automáticas durante 1 498 días trampa para capturar especies que utilizan la región y evaluar sus patrones de uso espacial y temporal del hábitat. Resultados: Se detectaron 70 especies de vertebrados de 42 familias y 27 órdenes, incluidas varias especies amenazadas a nivel mundial. Más de la mitad de todas las especies se encontraron en un solo hábitat, particularmente aves (78 %) y mamíferos (42 %). Los bosques secos tropicales albergan el mayor número de especies únicas y sustentan un mayor porcentaje de herbívoros que los hábitats de borde de manglares, que estaban dominados u hospedados por especies carnívoras y omnívoras. Las detecciones promedio por cámara trampa de todas las especies aumentaron significativamente desde el mes más frío y húmedo (octubre) hasta los meses más cálidos y secos (enero y febrero) en los bosques secos tropicales. El análisis de rarefacción basado en muestras reveló que la duración del estudio fue suficiente para muestrear los hábitats de bosque seco tropical y de borde, aunque los manglares requieren más muestreo. Conclusiones: Se encontró que los taxones pueden usar varios tipos de bosque en las diferentes etapas de su ciclo de vida, moviéndose entre áreas a medida que las condiciones ambientales cambian a lo largo del año. En nuestro estudio se confirmaron patrones generales de la biodiversidad global que favorecen el uso de los bosques de manglar por parte de carnívoros y omnívoros.
Asunto(s)
Animales , Vertebrados/anatomía & histología , Humedales , Ecosistema Tropical , Costa RicaRESUMEN
In this study, we applied multiple reaction monitoring (MRM)-profiling to explore the relative ion intensity of lipid classes in plasma samples from sea turtles in order to profile lipids relevant to sea turtle physiology and investigate how dynamic ocean environments affect these profiles. We collected plasma samples from foraging green (Chelonia mydas, n = 28) and hawksbill (Eretmochelys imbricata, n = 16) turtles live captured in North Pacific Costa Rica in 2017. From these samples, we identified 623 MRMs belonging to 10 lipid classes (sphingomyelin, phosphatidylcholine, free fatty acid, cholesteryl ester, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, ceramide, and triacylglyceride) and one metabolite group (acyl-carnitine) present in sea turtle plasma. The relative ion intensities of most lipids (80%) were consistent between species, across seasons, and were not correlated to body size or estimated sex. Of the differences we observed, the most pronounced was the differences in relative ion intensity between species. We identified 123 lipids that had species-specific relative ion intensities. While some of this variability is likely due to green and hawksbill turtles consuming different food items, we found indications of a phylogenetic component as well. Of these, we identified 47 lipids that varied by season, most belonging to the structural phospholipid classes. Overall, more lipids (n = 39) had higher relative ion intensity in the upwelling (colder) season compared to the non-upwelling season (n = 8). Further, we found more variability in hawksbill turtles than green turtles. Here, we provide the framework in which to apply future lipid profiling in the assessment of health, physiology, and behavior in endangered sea turtles.
Asunto(s)
Lípidos/sangre , Filogenia , Especificidad de la Especie , Tortugas/genética , Animales , Clima , Costa Rica , Lípidos/clasificación , Lípidos/genética , Estaciones del Año , Tortugas/fisiologíaRESUMEN
Mangrove forests, one of the world's most endangered ecosystems, are also some of the most difficult to access. This is especially true along the Pacific coast of Costa Rica, where 99% of the country's mangroves occur. Unmanned Aerial Systems (UAS), or drones, have become a convenient tool for natural area assessment, and offer a solution to the problems of remote mangrove monitoring. This study is the first to use UAS to analyze the structure of a mangrove forests within Central America. Our goals were to (1) determine the forest structure of two estuaries in northwestern Costa Rica through traditional ground measurements, (2) assess the accuracy of UAS measurements of canopy height and percent coverage and (3) determine whether the normalized difference vegetation index (NDVI) could discriminate between the most abundant mangrove species. We flew a UAS equipped with a single NDVI sensor during the peak wet (Sept-Nov) and dry (Jan-Feb) seasons. The structure and species composition of the estuaries showed a possible transition between the wet mangroves of southern Costa Rica and the drier northern mangroves. UAS-derived measurements at 100 cm/pixel resolution of percent canopy coverage and maximum and mean canopy height were not statistically different from ground measurements (p > 0.05). However, there were differences in mean canopy height at 10 cm/pixel resolution (p = 0.043), indicating diminished returns in accuracy as resolution becomes extremely fine. Mean NDVI values of Avicennia germinans (most abundant species) changed significantly between seasons (p < 0.001). Mean NDVI of Rhizophora racemosa (second most abundant species) was significantly different from A. germinans and dry forest dominant plots during the dry season (p < 0.001), demonstrating NDVI's capability of discriminating mangrove species. This study provides the first structural assessment of the studied estuaries and a framework for future studies of mangroves using UAS.
Asunto(s)
Aviación , Avicennia/crecimiento & desarrollo , Monitoreo del Ambiente , Estuarios , Rhizophoraceae/crecimiento & desarrollo , Humedales , Costa Rica , Océano PacíficoRESUMEN
Thermal tolerances are affected by the range of temperatures that species encounter in their habitat. Daniel Janzen hypothesized in his "Why mountain passes are higher in the tropics" that temperature gradients were effective barriers to animal movements where climatic uniformity was high. Sea turtles bury their eggs providing some thermal stability that varies with depth. We assessed the relationship between thermal uniformity and thermal tolerance in nests of three species of sea turtles. We considered that barriers were "high" when small thermal changes had comparatively large effects and "low" when the effects were small. Mean temperature was lower and fluctuated less in species that dig deeper nests. Thermal barriers were comparatively "higher" in leatherback turtle (Dermochelys coriacea) nests, which were the deepest, as embryo mortality increased at lower "high" temperatures than in olive ridley (Lepidochelys olivacea) and green turtle (Chelonia mydas) nests. Sea turtles have temperature-dependent sex determination (TSD) and embryo mortality increased as temperature approached the upper end of the transitional range of temperatures (TRT) that produces both sexes (temperature producing 100% female offspring) in leatherback and olive ridley turtles. As thermal barriers are "higher" in some species than in others, the effects of climate warming on embryo mortality is likely to vary among sea turtles. Population resilience to climate warming may also depend on the balance between temperatures that produce female offspring and those that reduce embryo survival.
Asunto(s)
Tortugas/fisiología , Animales , Costa Rica , Femenino , Comportamiento de Nidificación/fisiología , Óvulo/fisiología , TemperaturaRESUMEN
Previous studies have shown that the world's largest reptile - the leatherback turtle Dermochelys coriacea - conducts flexible foraging migrations that can cover thousands of kilometres between nesting sites and distant foraging areas. The vast distances that may be travelled by migrating leatherback turtles have greatly complicated conservation efforts for this species worldwide. However, we demonstrate, using a combination of satellite telemetry and stable isotope analysis, that approximately half of the nesting leatherbacks from an important rookery in South Africa do not migrate to distant foraging areas, but rather, forage in the coastal waters of the nearby Mozambique Channel. Moreover, this coastal cohort appears to remain resident year-round in shallow waters (<50 m depth) in a relatively fixed area. Stable isotope analyses further indicate that the Mozambique Channel also hosts large numbers of loggerhead turtles Caretta caretta. The rare presence of a resident coastal aggregation of leatherback turtles not only presents a unique opportunity for conservation, but alongside the presence of loggerhead turtles and other endangered marine megafauna in the Mozambique Channel, highlights the importance of this area as a marine biodiversity hotspot.
Asunto(s)
Migración Animal , Conducta Alimentaria , Tortugas/fisiología , Animales , Conservación de los Recursos Naturales , Comunicaciones por Satélite , Sudáfrica , Telemetría/instrumentaciónRESUMEN
The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals.
Asunto(s)
Diatomeas/aislamiento & purificación , Tortugas/microbiología , Animales , Diatomeas/clasificación , Diatomeas/ultraestructura , Microscopía Electrónica de RastreoRESUMEN
Increasing sand temperatures resulting from climate change may negatively impact sea turtle nests by altering sex ratios and decreasing reproductive output. We analyzed the effect of nest shading and watering on sand temperatures as climate mitigation strategies in a beach hatchery at Playa Grande, Costa Rica. We set up plots and placed thermocouples at depths of 45 cm and 75 cm. Half of the plots were shaded and half were exposed to the sun. Within these exposure treatments, we applied three watering treatments over one month, replicating local climatic conditions experienced in this area. We also examined gravimetric water content of sand by collecting sand samples the day before watering began, the day after watering was complete, and one month after completion. Shading had the largest impact on sand temperature, followed by watering and depth. All watering treatments lowered sand temperature, but the effect varied with depth. Temperatures in plots that received water returned to control levels within 10 days after watering stopped. Water content increased at both depths in the two highest water treatments, and 30 days after the end of water application remained higher than plots with low water. While the impacts of watering on sand temperature dissipate rapidly after the end of application, the impacts on water content are much more lasting. Although less effective at lowering sand temperatures than shading, watering may benefit sea turtle clutches by offsetting negative impacts of low levels of rain in particularly dry areas. Prior to implementing such strategies, the natural conditions at the location of interest (e.g. clutch depth, environmental conditions, and beach characteristics) and natural hatchling sex ratios should be taken into consideration. These results provide insight into the effectiveness of nest shading and watering as climate mitigation techniques and illustrate important points of consideration in the crafting of such strategies.
Asunto(s)
Cambio Climático , Comportamiento de Nidificación/fisiología , Reproducción/fisiología , Tortugas/fisiología , Agua/química , Animales , Costa Rica , Océanos y Mares , Razón de Masculinidad , TemperaturaRESUMEN
Using satellite transmitters, we determined the internesting movements, spatial ecology and diving behavior of East Pacific green turtles (Chelonia mydas) nesting on Nombre de Jesús and Zapotillal beaches along the Pacific coast of northwestern Costa Rica. Kernel density analysis indicated that turtles spent most of their time in a particularly small area in the vicinity of the nesting beaches (50% utilization distribution was an area of 3 km(2) ). Minimum daily distance traveled during a 12 day internesting period was 4.6 ± 3.5 km. Dives were short and primarily occupied the upper 10 m of the water column. Turtles spent most of their time resting at the surface and conducting U-dives (ranging from 60 to 81% of the total tracking time involved in those activities). Turtles showed a strong diel pattern, U-dives mainly took place during the day and turtles spent a large amount of time resting at the surface at night. The lack of long-distance movements demonstrated that this area was heavily utilized by turtles during the nesting season and, therefore, was a crucial location for conservation of this highly endangered green turtle population. The unique behavior of these turtles in resting at the surface at night might make them particularly vulnerable to fishing activities near the nesting beaches.
Asunto(s)
Distribución Animal/fisiología , Ritmo Circadiano/fisiología , Buceo/fisiología , Especies en Peligro de Extinción , Actividad Motora/fisiología , Conducta Espacial/fisiología , Tortugas/fisiología , Animales , Conservación de los Recursos Naturales/métodos , Costa Rica , Océano Pacífico , TelemetríaRESUMEN
Egg-burying reptiles need relatively stable temperature and humidity in the substrate surrounding their eggs for successful development and hatchling emergence. Here we show that egg and hatchling mortality of leatherback turtles (Dermochelys coriacea) in northwest Costa Rica were affected by climatic variability (precipitation and air temperature) driven by the El Niño Southern Oscillation (ENSO). Drier and warmer conditions associated with El Niño increased egg and hatchling mortality. The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) projects a warming and drying in Central America and other regions of the World, under the SRES A2 development scenario. Using projections from an ensemble of global climate models contributed to the IPCC report, we project that egg and hatchling survival will rapidly decline in the region over the next 100 years by â¼50-60%, due to warming and drying in northwestern Costa Rica, threatening the survival of leatherback turtles. Warming and drying trends may also threaten the survival of sea turtles in other areas affected by similar climate changes.
Asunto(s)
Animales Recién Nacidos/fisiología , Cambio Climático/mortalidad , El Niño Oscilación del Sur , Modelos Teóricos , Reproducción/fisiología , Tortugas/fisiología , Animales , Tamaño de la Nidada/fisiología , Costa Rica , Humedad , Mortalidad , Óvulo/fisiología , Océano Pacífico , Análisis de Regresión , TemperaturaRESUMEN
Olivella columellaris (Sowerby 1825) and O. semistriata (Gray 1839) are suspension-feeding, swash-surfing snails on tropical sandy beaches of the east Pacific. While they often are the numerically dominant macrofaunal element in their habitats, their biology is poorly understood; the two species actually have been confused in all of the few publications that address their ecology. Frequent misidentifications in publications and collections contributed also to an overestimation of the geographic overlap of the two species. To provide a sound taxonomic basis for further functional, ecological, and evolutionary investigations, we evaluated the validity of diagnostic traits in wild populations and museum collections, and defined workable identification criteria. Morphometric analysis demonstrated that shell growth is allometric in O. columellaris but isometric in O. semistriata, suggesting that the species follow distinct developmental programs. The taxonomic confusion is aggravated by the existence of populations of dwarfish O. semistriat, which originally had been described as a separate species, O. attenuata (Reeve 1851). At our Costa Rican study sites, the occurrence of such dwarfish populations correlates with low wave energies but not with predation pressure and anthropogenic disturbances, indicating significant ecological plasticity in the development of O. semistriata.
La Olivella columellaris (Sowerby 1825) y la O. semistriata (Gray 1839) son caracoles filtradores que navegan en la zona de vaivén de las playas arenosas tropicales del Pacífico oriental. Si bien son frecuentemente el elemento macrofáunico dominante en su habitat, su biología está insuficientemente entendida; de hecho, las dos especies han sido confundidas en las pocas publicaciones que han tratado de su ecología. La identificación equivocada tanto en las publicaciones como en las colecciones ha contribuido también a sobrestimar el solapamiento geográfico de las dos especies. Para proporcionar una base taxonómica segura para futuras investigaciones funcionales, evolutivas y ecológicas, evaluamos la validez de los rasgos diagnósticos en poblaciones silvestres y en colecciones museísticas, y definimos criterios de identificación para ser usados. El análisis morfométrico mostró que el crecimiento de la concha es alométrico en la O. columellaris pero isométrico en la O. semistriata, lo que sugiere que las dos especies siguen programas de desarrollo diferentes. La confusión taxonómica se ha visto agravada por la existencia de poblaciones de O. semistriata enanas, que fueron originalmente descritas como una especie separada: O. attenuata (Reeve 1850). En nuestro sitio de estudio en Costa Rica, la ocurrencia de tales poblaciones enanas se correlaciona con olas de baja energía, y no con la presión de depredación ni con disturbios antropogénicos, lo que indica una plasticidad ecológica considerable en el desarrollo de la O. semistriata.
RESUMEN
El modelo educativo por competencias profesionales integradas para la educación, es una opción que busca generar procesos formativos de mayor calidad, sin perder de vista las necesidades de la sociedad, de la profesión, del desarrollo de la disciplina y de la responsabilidad académica, significando todo ello un acontecimiento más dinámico a la realidad del mundo circundante.
The educational model by professional skills integrated for education is an option that seeks to generate higher quality training processes without losing sight of the needs of society, the profession, the development of discipline and academic responsibility, meaning all an event more dynamic to reality of the surrounding world.
Asunto(s)
Humanos , Educación Médica , Facultades de MedicinaRESUMEN
Within 19 years the nesting population of leatherback turtles (Dermochelys coriacea) at Parque Nacional Marino Las Baulas declined from 1500 turtles nesting per year to about 100. We analyzed the effects of fishery bycatch and illegal harvesting (poaching) of eggs on this population. We modeled the population response to different levels of egg harvest (90, 75, 50, and 25%) and the effect of eradicating poaching at different times during the population decline. We compared effects of 90% poaching with those of 20% adult mortality because both of these processes were present in the population at Las Baulas. There was a stepwise decline in number of nesting turtles at all levels of egg harvest. Extirpation times for different levels of poaching ranged from 45 to 282 years. The nesting population declined more slowly and survived longer with 20% adult mortality (146 years) than it did with 90% poaching (45 years). Time that elapsed until poaching stopped determined the average population size at which the population stabilized, ranging from 90 to 420 nesting turtles. Our model predicted that saving clutches lost naturally would restore the population when adult mortality rates were low and would contribute more to population recovery when there were short remigration intervals between nesting seasons and a large proportion of natural loss of clutches. Because the model indicated that poaching was the most important cause of the leatherback decline at Las Baulas, protecting nests on the beach and protecting the beach from development are critical for survival of this population. Nevertheless, the model predicted that current high mortality rates of adults will prevent population recovery. Therefore, protection of the beach habitat and nests must be continued and fishery bycatch must be reduced to save this population.
Asunto(s)
Explotaciones Pesqueras/métodos , Modelos Teóricos , Conducta Predatoria , Tortugas/fisiología , Animales , Simulación por Computador , Costa Rica , Humanos , Mortalidad , Óvulo , Dinámica PoblacionalRESUMEN
Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.
Asunto(s)
Migración Animal , Conservación de los Recursos Naturales/métodos , Ecología , Tortugas/fisiología , Animales , Conservación de los Recursos Naturales/economía , Costa Rica , Conducta Alimentaria , Femenino , Comportamiento de Nidificación , Movimientos del AguaRESUMEN
Physiology, environment and life history demands interact to influence marine turtle bioenergetics and activity. However, metabolism and diving behavior of free-swimming marine turtles have not been measured simultaneously. Using doubly labeled water, we obtained the first field metabolic rates (FMRs; 0.20-0.74 W kg(-1)) and water fluxes (16-30% TBW day(-1), where TBW=total body water) for free-ranging marine turtles and combined these data with dive information from electronic archival tags to investigate the bioenergetics and diving activity of reproductive adult female leatherback turtles Dermochelys coriacea. Mean dive durations (7.8+/-2.4 min (+/-1 s.d.), bottom times (2.7+/-0.8 min), and percentage of time spent in water temperatures (Tw) < or =24 degrees C (9.5+/-5.7%) increased with increasing mean maximum dive depths (22.6+/-7.1 m; all P< or =0.001). The FMRs increased with longer mean dive durations, bottom times and surface intervals and increased time spent in Tw< or =24 degrees C (all r2> or =0.99). This suggests that low FMRs and activity levels, combined with shuttling between different water temperatures, could allow leatherbacks to avoid overheating while in warm tropical waters. Additionally, internesting leatherback dive durations were consistently shorter than aerobic dive limits calculated from our FMRs (11.7-44.3 min). Our results indicate that internesting female leatherbacks maintained low FMRs and activity levels, thereby spending relatively little energy while active at sea. Future studies should incorporate data on metabolic rate, dive patterns, water temperatures, and body temperatures to develop further the relationship between physiological and life history demands and marine turtle bioenergetics and activity.
Asunto(s)
Buceo/fisiología , Metabolismo Energético/fisiología , Comportamiento de Nidificación/fisiología , Tortugas/fisiología , Animales , Peso Corporal , Costa Rica , Femenino , Agua de Mar , Tortugas/metabolismoRESUMEN
Clutches of leatherback turtles, Dermochelys coriacea, have lower hatching success than those of other sea turtles, but causes of high embryonic mortality are unknown. We measured characteristics of clutches along with spatial and temporal changes in PO(2) and temperature during incubation to determine the extent to which they affected the developmental environment of leatherback embryos. Minimum PO(2) in nests decreased as both the total number and mass of metabolizing embryos increased. Increases in both the number and mass of metabolizing embryos caused an increase in maximum nest temperature. However, neither PO(2) nor temperature was correlated with hatching success. Our measurements of relatively high nest PO(2) (lowest 17.1 kPa or 16.9% O(2)) indicate that hypoxia apparently does not cause the low hatching success of leatherback clutches. Oxygen partial pressure increased and temperature decreased from the center toward the periphery of leatherback nests. We inferred from these measurements that positions of eggs within nests vary in quality and potentially affect overall developmental success of entire clutches. The large metabolic mass of leatherback clutches and limits to gas flux imposed by the sand create a situation in which leatherback embryos collectively affect their own environment.