Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375315

RESUMEN

Currently, the number of patients with neurodegenerative pathologies is estimated at over one million, with consequences also on the economic level. Several factors contribute to their development, including overexpression of A2A adenosine receptors (A2AAR) in microglial cells and up-regulation and post-translational alterations of some casein kinases (CK), among them, CK-1δ. The aim of the work was to study the activity of A2AAR and CK1δ in neurodegeneration using in-house synthesized A2A/CK1δ dual anta-inhibitors and to evaluate their intestinal absorption. Experiments were performed on N13 microglial cells, which were treated with a proinflammatory CK cocktail to simulate an inflammatory state typical of neurodegenerative diseases. Results showed that the dual anta-inhibitors have the ability to counteract the inflammatory state, even if compound 2 is more active than compound 1. In addition, compound 2 displayed an important antioxidant effect similar to the reference compound ZM241385. Since many known kinase inhibitors are very often unable to cross lipid bilayer membranes, the ability of A2A/CK1δ double anta-inhibitors to cross the intestinal barrier was investigated by an everted gut sac assay. HPLC analysis revealed that both compounds are able to cross the intestinal barrier, making them promising candidates for oral therapy.


Asunto(s)
Quinasa Idelta de la Caseína , Enfermedades Neurodegenerativas , Humanos , Regulación hacia Arriba , Enfermedades Neurodegenerativas/tratamiento farmacológico , Receptores Purinérgicos P1/metabolismo , Receptor de Adenosina A2A/metabolismo
2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37259317

RESUMEN

Based on a screening of a chemical library of A2A adenosine receptor (AR) antagonists, a series of di- and tri-substituted adenine derivatives were synthesized and tested for their ability to inhibit the activity of the enzyme casein kinase 1 delta (CK1δ) and to bind adenosine receptors (ARs). Some derivatives, here called "dual anta-inhibitors", demonstrated good CK1δ inhibitory activity combined with a high binding affinity, especially for the A2AAR. The N6-methyl-(2-benzimidazolyl)-2-dimethyamino-9-cyclopentyladenine (17, IC50 = 0.59 µM and KiA2A = 0.076 µM) showed the best balance of A2AAR affinity and CK1δ inhibitory activity. Computational studies were performed to simulate, at the molecular level, the protein-ligand interactions involving the compounds of our series. Hence, the dual anta-inhibitor 17 could be considered the lead compound of new therapeutic agents endowed with synergistic effects for the treatment of chronic neurodegenerative and cancer diseases.

3.
Expert Opin Ther Pat ; 32(6): 689-712, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35387537

RESUMEN

INTRODUCTION: A2B adenosine receptor (A2BAR) plays a crucial role in pathophysiologic conditions associated with high adenosine release, typical of airway inflammatory pathologies, gastrointestinal disorders, cancer, asthma, type 2 diabetes, and atherosclerosis. In some pathologies, simultaneous inactivation of A2A and A2BARs is desirable to have a synergism of action that leads to a greater efficacy of the pharmacological treatment and less side effects due to the dose of drug administered. In this context, it is strongly required to identify molecules capable of selectively antagonizing A2BAR or A2A/A2BARs. AREAS COVERED: The review provides a summary of patents, published from 2016 to present, on chemicals and their clinical use. In this paper, information on the biological activity of representative structures of recently developed A2B or A2A/A2B receptor ligands is reported. EXPERT OPINION: Among the four P1 receptors, A2BAR is the most inscrutable and the least studied until a few years ago, but its involvement in various inflammatory pathologies has recently made it a pharmacological target of high interest. Many efforts by the academy and pharmaceutical companies have been made to discover potential A2BAR and A2A/A2BARs drugs. Although several compounds have been synthesized only a few molecules have entered clinical trials.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor de Adenosina A2B , Adenosina/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Patentes como Asunto , Receptor de Adenosina A2B/química , Receptor de Adenosina A2B/fisiología , Transducción de Señal
4.
Curr Med Chem ; 29(28): 4780-4795, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35184706

RESUMEN

Endogenous nucleoside adenosine modulates a number of physiological effects through interaction with P1 purinergic receptors. All of them are G protein-coupled receptors, and, to date, four subtypes have been characterized and named A1, A2A, A2B, and A3. In recent years, adenosine receptors, particularly the A2A subtype, have become attractive targets for the treatment of several neurodegenerative disorders, known to involve neuroinflammation, like Parkinson's and Alzheimer's diseases, multiple sclerosis, and neuropsychiatric conditions. In fact, it has been demonstrated that inhibition of A2A adenosine receptors exerts neuroprotective effects counteracting neuroinflammatory processes and astroglial and microglial activation. The A2A adenosine receptor antagonist istradefylline, developed by Kyowa Hakko Kirin Inc., was approved in Japan as adjunctive therapy for the treatment of Parkinson's disease, and very recently, it was also approved by the US Food and Drug Administration. These findings pave the way for new therapeutic opportunities, so, in this review, a summary of the most relevant and promising A2A adenosine receptor antagonists will be presented along with their preclinical and clinical studies in neuroinflammation related diseases.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Adenosina/uso terapéutico , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Antagonistas de Receptores Purinérgicos P1/uso terapéutico , Receptor de Adenosina A2A
5.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35215276

RESUMEN

The overexpression of the A3 adenosine receptor (AR) in a number of cancer cell types makes it an attractive target for tumor diagnosis and therapy. Hence, in the search for new A3AR ligands, a series of novel 2,N6-disubstituted adenosines (Ados) was synthesized and tested in radioligand binding and functional assays at ARs. Derivatives bearing a 2-phenethylamino group in the N6-position were found to exert higher A3AR affinity and selectivity than the corresponding N6-(2,2-diphenylethyl) analogues. 2-Chloro-N6-phenylethylAdo (15) was found to be a potent full A3AR agonist with a Ki of 0.024 nM and an EC50 of 14 nM, in a cAMP accumulation assay. Unlike 15, the other ligands behaved as A3AR antagonists, which concentration-dependently reduced cell growth and exerted cytostatic activity on the prostate cancer cell line PC3, showing comparable and even more pronounced effects with respect to the ones elicited by the reference full agonist Cl-IB-MECA. In particular, the N6-(2,2-diphenylethyl)-2-phenylethynylAdo (12: GI50 = 14 µM, TGI = 29 µM, and LC50 = 59 µM) showed the highest activity proving to be a potential antitumor agent. The cytostatic effect of both A3AR agonist (Cl-IB-MECA) and antagonists (12 and other newly synthesized compounds) confirm previous observations according to which, in addition to the involvement of A3ARs, other cellular mechanisms are responsible for the anticancer effects of these ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA