Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-515436

RESUMEN

We analyzed the dynamics of the earliest T cell response to SARS-COV-2. A wave of TCRs strongly but transiently expand during infection, frequently peaking the same week as the first positive PCR test. These expanding TCR CDR3s were enriched for sequences functionally annotated as SARS-COV-2 specific. Most epitopes recognized by the expanding TCRs were highly conserved between SARS-COV-2 strains, but not with circulating human coronaviruses. Many expanding CDR3s were also present at high precursor frequency in pre-pandemic TCR repertoires. A similar set of early response TCRs specific for lymphocytic choriomeningitis virus epitopes were also found at high frequency in the pre-infection naive repertoire. High frequency naive precursors may allow the T cell response to respond rapidly during the crucial early phases of acute viral infection. One-Sentence SummaryHigh frequency naive precursors underly the rapid T cell response during the crucial early phases of acute viral infection.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259239

RESUMEN

Individuals with likely exposure to the highly infectious SARS-CoV-2 do not necessarily develop PCR or antibody positivity, suggesting some may clear sub-clinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-5. We hypothesised that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-26-12, would expand in vivo to mediate rapid viral control, potentially aborting infection. We studied T cells against the replication transcription complex (RTC) of SARS-CoV-2 since this is transcribed first in the viral life cycle13-15and should be highly conserved. We measured SARS-CoV-2-reactive T cells in a cohort of intensively monitored healthcare workers (HCW) who remained repeatedly negative by PCR, antibody binding, and neutralisation for SARS-CoV-2 (exposed seronegative, ES). 16-weeks post-recruitment, ES had memory T cells that were stronger and more multispecific than an unexposed pre-pandemic cohort, and more frequently directed against the RTC than the structural protein-dominated responses seen post-detectable infection (matched concurrent cohort). The postulate that HCW with the strongest RTC-specific T cells had an abortive infection was supported by a low-level increase in IFI27 transcript, a robust early innate signature of SARS-CoV-2 infection16. We showed that the RNA-polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and was preferentially targeted by T cells from UK and Singapore pre-pandemic cohorts and from ES. RTC epitope-specific T cells capable of cross-recognising HCoV variants were identified in ES. Longitudinal samples from ES and an additional validation cohort, showed pre-existing RNA-polymerase-specific T cells expanded in vivo following SARS-CoV-2 exposure, becoming enriched in the memory response of those with abortive compared to overt infection. In summary, we provide evidence of abortive seronegative SARS-CoV-2 infection with expansion of cross-reactive RTC-specific T cells, highlighting these highly conserved proteins as targets for future vaccines against endemic and emerging Coronaviridae.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-442903

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally to cause the COVID-19 pandemic. Despite the constant accumulation of genetic variation in the SARS-CoV-2 population, there was little evidence for the emergence of significantly more transmissible lineages in the first half of 2020. Starting around November 2020, several more contagious and possibly more virulent Variants of Concern (VoCs) were reported in various regions of the world. These VoCs share some mutations and deletions that haven arisen recurrently in distinct genetic backgrounds. Here, we build on our previous work modelling the association of mutations to SARS-CoV-2 transmissibility and characterise the contribution of individual recurrent mutations and deletions to estimated viral transmissibility. We then assess how patterns of estimated transmissibility in all SARS-CoV-2 clades have varied over the course of the COVID-19 pandemic by summing transmissibility estimates for all individual mutations carried by any sequenced genome analysed. Such an approach recovers the Delta variant (21A) as the most transmissible clade currently in circulation, followed by the Alpha variant (20I). By assessing transmissibility over the time of sampling, we observe a tendency for estimated transmissibility within clades to slightly decrease over time in most clades. Although subtle, this pattern is consistent with the expectation of a decay in transmissibility in mainly non-recombining lineages caused by the accumulation of weakly deleterious mutations. SARS-CoV-2 remains a highly transmissible pathogen, though such a trend could conceivably play a role in the turnover of different global viral clades observed over the pandemic so far. CaveatsO_LIThis work is not about the severity of disease. We do not analyse the severity of disease. We do not present any evidence that SARS-CoV-2 has decreased in severity. C_LIO_LILineage replacement dynamics are affected by many factors. The trend we recover for a decrease in inferred transmissibility of a clade over time is a small effect. We caution against over-interpretation. This result would not affect the management of the SARS-CoV-2 pandemic: for example, we make no claims about any impact on the efficacy of particular non-pharmaceutical interventions (NPIs). C_LIO_LIOur phylogeny-based method to infer changes in estimated transmissibility due to recurrent mutations and deletions makes a number of simplifying assumptions. These may not all be valid. The consistent trend for the slight decrease we report might be due to an as-yet-unidentified systematic bias. C_LI

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-422866

RESUMEN

The COVID-19 pandemic has led to an unprecedented global sequencing effort of its viral agent SARS-CoV-2. The first whole genome assembly of SARS-CoV-2 was published on January 5 2020. Since then, over 150,000 high-quality SARS-CoV-2 genomes have been made available. This large genomic resource has allowed tracing of the emergence and spread of mutations and phylogenetic reconstruction of SARS-CoV-2 lineages in near real time. Though, whether SARS-CoV-2 undergoes genetic recombination has been largely overlooked to date. Recombination-mediated rearrangement of variants that arose independently can be of major evolutionary importance. Moreover, the absence of recombination is a key assumption behind the application of phylogenetic inference methods. Here, we analyse the extant genomic diversity of SARS-CoV-2 and show that, to date, there is no detectable hallmark of recombination. We assess our detection power using simulations and validate our method on the related MERS-CoV for which we report evidence for widespread genetic recombination.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-384743

RESUMEN

SARS-CoV-2, the agent of the COVID-19 pandemic, can infect a wide range of mammals. Since its spread in humans, secondary host jumps of SARS-CoV-2 from humans to a variety of domestic and wild populations of mammals have been documented. The evolution of SARS-CoV-2 in different host species is of fundamental interest while also providing indication of how SARS-CoV-2 may have adapted to human hosts soon after the initial host jump, a time window for which there are no genome sequences available. Moreover, the study of SARS-CoV-2 circulating in animals is critical to assess the risk that the transmission of animal-adapted viral lineages back into humans (i.e., spillback) may pose. Here, we compared the genomic landscapes of SARS-CoV-2 isolated from animal species relative to that in humans, profiling the mutational biases indicative of potentially different selective pressures in animals. We focused on viral genomes collected in infected mink (Neovison vison) and white-tailed deer (Odocoileus virginianus) for which reports of multiple independent spillover events and subsequent animal-to-animal transmission are available. We identified six candidate mutations for animal-specific adaptation in mink (NSP9_G37E, Spike_F486L, Spike_N501T, Spike_Y453F, ORF3a_T229I, ORF3a_L219V), and one in deer (NSP3a_L1035F), though these mutations appear to confer minimal advantage for circulation in humans. Additionally, circulation of SARS-CoV-2 in mink and deer has not caused considerable changes to the evolutionary trajectory of SARS-CoV-2 thus far. Finally, our results suggest that minimal adaptation was required for human-to-animal spillover and subsequent onward transmission in mink and deer, highlighting the generalist nature of SARS-CoV-2 as a pathogen of mammalian hosts.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-355677

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus responsible for the COVID-19 pandemic, continues to cause significant public health burden and disruption globally. Genomic epidemiology approaches point to most countries in the world having experienced many independent introductions of SARS-CoV-2 during the early stages of the pandemic. However, this situation may change with local lockdown policies and restrictions on travel leading to the emergence of more geographically structured viral populations and lineages transmitting locally. Here, we report the first SARS-CoV-2 genomes from Palestine sampled from early March, when the first cases were observed, through to August of 2020. SARS-CoV-2 genomes from Palestine fall across the diversity of the global phylogeny, consistent with at least nine independent introductions into the region. We identify one locally predominant lineage in circulation represented by 50 Palestinian SARS-CoV-2, grouping with isolated viral samples from patients in Israel and the UK. We estimate the age of introduction of this lineage to 05/02/2020 (16/01/2020 - 19/02/2020), suggesting SARS-CoV-2 was already in circulation in Palestine predating its first detection in Bethlehem in early March. Our work highlights the value of ongoing genomic surveillance and monitoring to reconstruct the epidemiology of COVID-19 at both local and global scales.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-108506

RESUMEN

The COVID-19 pandemic is caused by the coronavirus SARS-CoV-2, which jumped into the human population in late 2019 from a currently uncharacterised animal reservoir. Due to this extremely recent association with humans, SARS-CoV-2 may not yet be fully adapted to its human host. This has led to speculations that some lineages of SARS-CoV-2 may be evolving towards higher transmissibility. The most plausible candidate mutations under putative natural selection are those which have emerged repeatedly and independently (homoplasies). Here, we formally test whether any of the recurrent mutations that have been observed in SARS-CoV-2 are significantly associated with increased viral transmission. To do so, we develop a phylogenetic index to quantify the relative number of descendants in sister clades with and without a specific allele. We apply this index to a carefully curated set of recurrent mutations identified within a dataset of 46,723 SARS-CoV-2 genomes isolated from patients worldwide. We do not identify a single recurrent mutation in this set convincingly associated with increased viral transmission. Instead, recurrent SARS-CoV-2 mutations currently in circulation appear to be evolutionary neutral. Recurrent mutations also seem primarily induced by the human immune system via host RNA editing, rather than being signatures of adaptation to the novel human host. In conclusion, we find no evidence at this stage for the emergence of significantly more transmissible lineages of SARS-CoV-2 due to recurrent mutations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA