Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 36(6): 1125-1134, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33576126

RESUMEN

The cyanotoxin cylindrospermopsin (CYN) is the second biggest cause of poisoning worldwide, both in humans and animals. Although CYN primarily affects the aquatic environments and can be absorbed in fishes by multiple routes, data reporting its toxicity and mechanism of action are still scarce in this group. Using P. reticulata as model species, it was evaluated whether CYN promotes mutagenic and genotoxic effects in different fish target tissues. Adult females were exposed in a static way to 0 (control), 0.5, 1.0, and 1.5 µg L-1 of pure CYN for 24 and 96 hours. For the first time, DNA damage was detected in fish brain after CYN exposition. In brain cells, a concentration-response DNA damage was observed for both exposure times, suggesting a direct or indirect action of CYN in neurotoxicity. For the liver cells, 96 hours caused an increase in DNA damage, as well the highest percentage of DNA in the tail was reached when used 1.5 µg L-1 of CYN. In peripheral blood cells, an increase in DNA damage was observed for all tested concentrations after 96 hours. In erythrocytes, micronuclei frequency was higher at 1.5 µg L-1 treatment while the erythrocyte nuclear abnormalities (ENA) frequency was significantly higher even at the lowest CYN concentration. Such data demonstrated that acute exposition to CYN promotes genotoxicity in the brain, liver, and blood cells of P. reticulata, as well mutagenicity in erythrocytes. It rises an alert regarding to the toxic effects of CYN for aquatic organisms as well as for human health.


Asunto(s)
Alcaloides , Poecilia , Adulto , Animales , Toxinas de Cianobacterias , Daño del ADN , Femenino , Humanos , Uracilo/toxicidad
2.
Int J Biol Macromol ; 93(Pt A): 20-26, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27554938

RESUMEN

The GH10 endo-xylanase from Thermoascus aurantiacus CBMAI 756 (XynA) is industrially attractive due to its considerable thermostability and high specific activity. Considering the possibility of a further improvement in thermostability, eleven mutants were created in the present study via site-directed mutagenesis using XynA as a template. XynA and its mutants were successfully overexpressed in Escherichia coli Rosetta-gami DE3 and purified, exhibiting maximum xylanolytic activity at pH 5 and 65°C. Three of the eleven mutants, Q158R, H209N, and N257D, demonstrated increased thermostability relative to the wild type at 70°C and 75°C.Q158R and N257D were stable in the pH range 5.0-10.0, while WT and H209N were stable from pH 8-10. CD analysis demonstrated that the WT and the three mutant enzymes were expressed in a folded form. H209N was the most thermostable mutant, showing a Tm of 71.3°C. Molecular dynamics modeling analyses suggest that the increase in H209N thermostability may beattributed to a higher number of short helices and salt bridges, which displayed a positive charge in the catalytic core, stabilizing its tertiary structure.


Asunto(s)
Endo-1,4-beta Xilanasas/química , Proteínas Fúngicas/química , Thermoascus/enzimología , Endo-1,4-beta Xilanasas/genética , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA