Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20198432

RESUMEN

This paper presents a deep learning framework for epidemiology system identification from noisy and sparse observations with quantified uncertainty. The proposed approach employs an ensemble of deep neural networks to infer the time-dependent reproduction number of an infectious disease by formulating a tensor-based multi-step loss function that allows us to efficiently calibrate the model on multiple observed trajectories. The method is applied to a mobility and social behavior-based SEIR model of COVID-19 spread. The model is trained on Google and Unacast mobility data spanning a period of 66 days, and is able to yield accurate future forecasts of COVID-19 spread in 203 US counties within a time-window of 15 days. Strikingly, a sensitivity analysis that assesses the importance of different mobility and social behavior parameters reveals that attendance of close places, including workplaces, residential, and retail and recreational locations, has the largest impact on the basic reproduction number. The model enables us to rapidly probe and quantify the effects of government interventions, such as lock-down and re-opening strategies. Taken together, the proposed framework provides a robust workflow for data-driven epidemiology model discovery under uncertainty and produces probabilistic forecasts for the evolution of a pandemic that can judiciously inform policy and decision making. All codes and data accompanying this manuscript are available at https://github.com/PredictiveIntelligenceLab/DeepCOVID19.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20111419

RESUMEN

Understanding the outbreak dynamics of the COVID-19 pandemic has important implications for successful containment and mitigation strategies. Recent studies suggest that the population prevalence of SARS-CoV-2 antibodies, a proxy for the number of asymptomatic cases, could be an order of magnitude larger than expected from the number of reported symptomatic cases. Knowing the precise prevalence and contagiousness of asymptomatic transmission is critical to estimate the overall dimension and pandemic potential of COVID-19. However, at this stage, the effect of the asymptomatic population, its size, and its outbreak dynamics remain largely unknown. Here we use reported symptomatic case data in conjunction with antibody seroprevalence studies, a mathematical epidemiology model, and a Bayesian framework to infer the epidemiological characteristics of COVID-19. Our model computes, in real time, the time-varying contact rate of the outbreak, and projects the temporal evolution and credible intervals of the effective reproduction number and the symptomatic, asymptomatic, and recovered populations. Our study quantifies the sensitivity of the outbreak dynamics of COVID-19 to three parameters: the effective reproduction number, the ratio between the symptomatic and asymptomatic populations, and the infectious periods of both groups. For nine distinct locations, our model estimates the fraction of the population that has been infected and recovered by Jun 15, 2020 to 24.15% (95% CI: 20.48%-28.14%) for Heinsberg (NRW, Germany), 2.40% (95% CI: 2.09%-2.76%) for Ada County (ID, USA), 46.19% (95% CI: 45.81%-46.60%) for New York City (NY, USA), 11.26% (95% CI: 7.21%-16.03%) for Santa Clara County (CA, USA), 3.09% (95% CI: 2.27%-4.03%) for Denmark, 12.35% (95% CI: 10.03%-15.18%) for Geneva Canton (Switzerland), 5.24% (95% CI: 4.84%-5.70%) for the Netherlands, 1.53% (95% CI: 0.76%-2.62%) for Rio Grande do Sul (Brazil), and 5.32% (95% CI: 4.77%-5.93%) for Belgium. Our method traces the initial outbreak date in Santa Clara County back to January 20, 2020 (95% CI: December 29, 2019 - February 13, 2020). Our results could significantly change our understanding and management of the COVID-19 pandemic: A large asymptomatic population will make isolation, containment, and tracing of individual cases challenging. Instead, managing community transmission through increasing population awareness, promoting physical distancing, and encouraging behavioral changes could become more relevant.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20071035

RESUMEN

For the first time in history, on March 17,2020, the European Union closed all its external borders to contain the spreading of the coronavirus 2019, COVID-19. Throughout two past months, governments around the world have implemented massive travel restrictions and border control to mitigate the outbreak of this global pandemic. However, the precise effects of travel restrictions on the outbreak dynamics of COVID-19 remain unknown. Here we combine a global network mobility model with a local epidemiology model to simulate and predict the outbreak dynamics and outbreak control of COVID-19 across Europe. We correlate our mobility model to passenger air travel statistics and calibrate our epidemiology model using the number of reported COVID-19 cases for each country. Our simulations show that mobility networks of air travel can predict the emerging global diffusion pattern of a pandemic at the early stages of the outbreak. Our results suggest that an unconstrained mobility would have significantly accelerated the spreading of COVID-19, especially in Central Europe, Spain, and France. Ultimately, our network epidemiology model can inform political decision making and help identify exit strategies from current travel restrictions and total lockdown.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20055863

RESUMEN

On March 11, 2020, the World Health Organization declared the coronavirus disease 2019, COVID19, a global pandemic. In an unprecedented collective effort, massive amounts of data are now being collected worldwide to estimate the immediate and long-term impact of this pandemic on the health system and the global economy. However, the precise timeline of the disease, its transmissibility, and the effect of mitigation strategies remain incompletely understood. Here we integrate a global network model with a local epidemic SEIR model to quantify the outbreak dynamics of COVID-19 in China and the United States. For the outbreak in China, in n = 30 provinces, we found a latent period of 2.56{+/-}0.72 days, a contact period of 1.47{+/-}0.32 days, and an infectious period of 17.82{+/-}2.95 days. We postulate that the latent and infectious periods are disease-specific, whereas the contact period is behavior-specific and can vary between different provinces, states, or countries. For the early stages of the outbreak in the United States, in n = 50 states, we adopted the disease-specific values from China, and found a contact period of 3.38{+/-}0.69 days. Our network model predicts that-without the massive political mitigation strategies that are in place today-the United states would have faced a basic reproduction number of 5.3{+/-}0.95 and a nationwide peak of the outbreak on May 10, 2020 with 3 million infections. Our results demonstrate how mathematical modeling can help estimate outbreak dynamics and provide decision guidelines for successful outbreak control. We anticipate that our model will become a valuable tool to estimate the potential of vaccination and quantify the effect of relaxing political measures including total lock down, shelter in place, and travel restrictions for low-risk subgroups of the population or for the population as a whole.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA