Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Development ; 143(13): 2367-75, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27381226

RESUMEN

The protocadherins Fat4 and Dchs1 act as a receptor-ligand pair to regulate many developmental processes in mice and humans, including development of the vertebrae. Based on conservation of function between Drosophila and mammals, Fat4-Dchs1 signalling has been proposed to regulate planar cell polarity (PCP) and activity of the Hippo effectors Yap and Taz, which regulate cell proliferation, survival and differentiation. There is strong evidence for Fat regulation of PCP in mammals but the link with the Hippo pathway is unclear. In Fat4(-/-) and Dchs1(-/-) mice, many vertebrae are split along the midline and fused across the anterior-posterior axis, suggesting that these defects might arise due to altered cell polarity and/or changes in cell proliferation/differentiation. We show that the somite and sclerotome are specified appropriately, the transcriptional network that drives early chondrogenesis is intact, and that cell polarity within the sclerotome is unperturbed. We find that the key defect in Fat4 and Dchs1 mutant mice is decreased proliferation in the early sclerotome. This results in fewer chondrogenic cells within the developing vertebral body, which fail to condense appropriately along the midline. Analysis of Fat4;Yap and Fat4;Taz double mutants, and expression of their transcriptional target Ctgf, indicates that Fat4-Dchs1 regulates vertebral development independently of Yap and Taz. Thus, we have identified a new pathway crucial for the development of the vertebrae and our data indicate that novel mechanisms of Fat4-Dchs1 signalling have evolved to control cell proliferation within the developing vertebrae.


Asunto(s)
Cadherinas/metabolismo , Transducción de Señal , Columna Vertebral/citología , Columna Vertebral/embriología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Polaridad Celular , Proliferación Celular , Ratones Mutantes , Morfogénesis , Mutación/genética , Fosfoproteínas/metabolismo , Columna Vertebral/metabolismo , Transactivadores , Proteínas Señalizadoras YAP
2.
Curr Biol ; 24(14): 1620-1627, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24998526

RESUMEN

Planar cell polarity (PCP) describes the polarization of cell structures and behaviors within the plane of a tissue. PCP is essential for the generation of tissue architecture during embryogenesis and for postnatal growth and tissue repair, yet how it is oriented to coordinate cell polarity remains poorly understood [1]. In Drosophila, PCP is mediated via the Frizzled-Flamingo (Fz-PCP) and Dachsous-Fat (Fat-PCP) pathways [1-3]. Fz-PCP is conserved in vertebrates, but an understanding in vertebrates of whether and how Fat-PCP polarizes cells, and its relationship to Fz-PCP signaling, is lacking. Mutations in human FAT4 and DCHS1, key components of Fat-PCP signaling, cause Van Maldergem syndrome, characterized by severe neuronal abnormalities indicative of altered neuronal migration [4]. Here, we investigate the role and mechanisms of Fat-PCP during neuronal migration using the murine facial branchiomotor (FBM) neurons as a model. We find that Fat4 and Dchs1 are expressed in complementary gradients and are required for the collective tangential migration of FBM neurons and for their PCP. Fat4 and Dchs1 are required intrinsically within the FBM neurons and extrinsically within the neuroepithelium. Remarkably, Fat-PCP and Fz-PCP regulate FBM neuron migration along orthogonal axes. Disruption of the Dchs1 gradients by mosaic inactivation of Dchs1 alters FBM neuron polarity and migration. This study implies that PCP in vertebrates can be regulated via gradients of Fat4 and Dchs1 expression, which establish intracellular polarity across FBM cells during their migration. Our results also identify Fat-PCP as a novel neuronal guidance system and reveal that Fat-PCP and Fz-PCP can act along orthogonal axes.


Asunto(s)
Cadherinas/metabolismo , Polaridad Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/fisiología , Animales , Cadherinas/biosíntesis , Cadherinas/genética , Movimiento Celular , Drosophila , Proteínas de Drosophila/biosíntesis , Aparato de Golgi/fisiología , Glicoproteínas de Membrana/biosíntesis , Ratones , Ratones Noqueados , Transducción de Señal
4.
Differentiation ; 72(7): 348-62, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15554946

RESUMEN

The talpid(3) chicken mutant has a pleiotropic phenotype including polydactyly and craniofacial abnormalities. Limb polydactyly in talpid(3) suggests a gain of Hedgehog (Hh) signaling, whereas, paradoxically, absence of midline facial structures suggests a loss of Hh function. Here we analyze the status of Shh signaling in the talpid(3) mutant head. We show that Shh expression domains are lost from the talpid(3) head--in hindbrain, midbrain, zona limitans intrathalamica, and stomodeal ectoderm--and that direct targets of Hedgehog signaling, Ptc1, Ptc2, and Gli1, are also absent even in areas associated with primary Shh expression. These data suggest that the talpid(3) mutation leads to defective activation of the Shh pathway and, furthermore, that tissue-to-tissue transduction of Shh expression in the developing head depends on Hh pathway activation. Failure to activate the Shh pathway can also explain absence of floor plate and Hnf-3beta and Netrin-1 expression in midbrain and hindbrain and absence of Fgf-8 expression in commissural plate. Other aspects of gene expression in the talpid(3) head, however, suggest misspecification, such as maintenance of floor plate-like gene expression in telencephalon. In branchial arches and lower jaw, where Shh is expressed, changes in expression of genes involved in patterning and mesodermal specification suggest both gain and loss of Hedgehog function. Thus, analysis of gene expression in talpid(3) head shows that, as in talpid(3) limb, expression of some genes is lost, while others are ectopically expressed. Unlike the limb, many head regions depend on Hh induction of a secondary domain of Shh expression, and failure of this induction in talpid(3), together with the inability to activate the Shh pathway, explain the loss-of-function head phenotype. This gene expression analysis in the talpid(3) head also confirms and extends knowledge of the importance of Shh signaling and the balance between activation and repression of Shh targets in many aspects of craniofacial morphogenesis.


Asunto(s)
Embrión de Pollo/crecimiento & desarrollo , Pollos/genética , Anomalías Craneofaciales/etiología , Mutación , Transactivadores/metabolismo , Animales , Tipificación del Cuerpo/genética , Encéfalo/metabolismo , Química Encefálica , Pollos/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cabeza/embriología , Proteínas Hedgehog , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Morfogénesis/genética , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Transducción de Señal/genética , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Anat Embryol (Berl) ; 208(6): 487-97, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15338300

RESUMEN

The autosomal dominant Japanese wingless mutant has varying degrees of wing and leg truncations. The wing defects range from complete loss to negligible defects, whereas leg abnormalities are usually restricted to loss of the phalanges. Further analyses of the mutant focusing on the leg, which has been relatively uncharacterized, were performed. The expression pattern of Fgf8, a marker gene for the apical ectodermal ridge (AER) that controls outgrowth of the limbs, revealed premature regression at stage 28. Electron microscopy study showed abnormalities in the basement membrane all through the AER in the same stage. In the mutant, cell death was observed in the mesenchyme underlying AER between stages 31 and 32, although in the wild-type leg, AER regression and cell death occurred almost simultaneously at stages 33-34. To know if the cell death and cessation of the outgrowth are common mechanisms of wild-type and the mutant, we removed the AER in wild-type embryos at stage 28 and followed the fate of the limb. This also resulted in premature cell death 48 h after AER removal (equivalent to stage 32) and limb truncations similar to those observed in mutant limbs. To confirm whether either AER or underlying mesenchyme is responsible for the truncation, transplantation of the AER between the wild-type and the mutant was performed. This revealed that AER is the defective tissue in this mutant.


Asunto(s)
Ectodermo , Regulación del Desarrollo de la Expresión Génica , Extremidad Inferior/embriología , Mutación , Alas de Animales/anomalías , Animales , Apoptosis , Embrión de Pollo , Ectodermo/metabolismo , Ectodermo/trasplante , Ectodermo/ultraestructura , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Marcadores Genéticos , Hibridación in Situ , Extremidad Inferior/patología , Alas de Animales/metabolismo , Alas de Animales/patología
6.
J Anat ; 202(1): 69-81, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12587922

RESUMEN

The limb myogenic precursors arise by delamination from the lateral dermomyotome in response to signals from the lateral plate mesoderm. They subsequently migrate into the developing limb bud where they switch on the expression of the myogenic regulatory factors, MyoD and Myf5, and coalese to form the dorsal and ventral muscle masses. The myogenic cells subsequently undergo terminal differentiation into slow or fast fibres which have distinct contractile properties determining how a muscle will function. In general, fast fibres contract rapidly with high force and are characterized by the expression of fast myosin heavy chains (MyHC). These fibres are needed for movement. In contrast, slow fibres express slow MyHC, contract slowly and are required for maintenance of posture. This review focuses on the molecular signals that control limb myogenic development from the initial delamination and migration of the premyogenic cells to the ultimate formation of the complex muscle pattern and differentiation of slow and fast fibres.


Asunto(s)
Inducción Embrionaria/genética , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Músculos/embriología , Factores Reguladores Miogénicos/genética , Vertebrados/embriología , Animales , Expresión Génica , Proteínas Hedgehog , Morfogénesis/genética , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Transactivadores/genética , Vertebrados/genética
7.
Dev Biol ; 251(1): 142-56, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12413904

RESUMEN

The Wnt antagonist Frzb-1 is expressed during limb skeletogenesis, but its roles in this complex multistep process are not fully understood. To address this issue, we determined Frzb-1 gene expression patterns during chick long bone development and carried out gain- and loss-of-function studies by misexpression of Frzb-1, Wnt-8 (a known Frzb-1 target), or different forms of the intracellular Wnt mediator LEF-1 in developing limbs and cultured chondrocytes. Frzb-1 expression was quite strong in mesenchymal prechondrogenic condensations and then characterized epiphyseal articular chondrocytes and prehypertrophic chondrocytes in growth plates. Virally driven Frzb-1 misexpression caused shortening of skeletal elements, joint fusion, and delayed chondrocyte maturation, with consequent inhibition of matrix mineralization, metalloprotease expression, and marrow/bone formation. In good agreement, misexpression of Frzb-1 or a dominant-negative form of LEF-1 in cultured chondrocytes maintained the cells at an immature stage. Instead, misexpression of Wnt-8 or a constitutively active LEF-1 strongly promoted chondrocyte maturation, hypertrophy, and calcification. Immunostaining revealed that the distribution of endogenous Wnt mediator beta-catenin changes dramatically in vivo and in vitro, from largely cytoplasmic in immature proliferating and prehypertrophic chondrocytes to nuclear in hypertrophic mineralizing chondrocytes. Misexpression of Frzb-1 prevented beta-catenin nuclear relocalization in chondrocytes in vivo or in vitro. The data demonstrate that Frzb-1 exerts a strong influence on limb skeletogenesis and is a powerful and direct modulator of chondrocyte maturation, phenotype, and function. Phases of skeletogenesis, such as terminal chondrocyte maturation and joint formation, appear to be particularly dependent on Wnt signaling and thus very sensitive to Frzb-1 antagonistic action.


Asunto(s)
Desarrollo Óseo/fisiología , Diferenciación Celular/fisiología , Extremidades/embriología , Glicoproteínas/fisiología , Proteínas de Pez Cebra , Animales , Densidad Ósea/fisiología , Calcificación Fisiológica/fisiología , Embrión de Pollo , Condrocitos/citología , Condrocitos/fisiología , Extremidades/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/fisiología , Transducción de Señal , Proteínas Wnt
8.
Sci Prog ; 85(Pt 2): 151-73, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12216279

RESUMEN

The sensory organs--the eye, ear, and nose- are formed, in part, from ectodermal thickenings: placodes. Their development is distinct from that of other regions of the developing body and they are essential for the development of other structures. For example, the olfactory placode which gives rise to the nose is essential for the functional development of the reproductive organs and hence fertility. Recently much progress has been made in the understanding of placode development, at both a molecular and embryological level. This is important as abnormal development of placodes occurs in a number of human syndromes. Furthermore, knowledge of placode development will give insight into therapeutic strategies to prevent degenerative change such as deafness. This review highlights the current knowledge of placode development and the future challenges in unravelling the cascades of signalling interactions that control development of these unique structures.


Asunto(s)
Ectodermo/fisiología , Órganos de los Sentidos/embriología , Animales , Diferenciación Celular/genética , Humanos , Morfogénesis/genética , Órganos de los Sentidos/anatomía & histología , Órganos de los Sentidos/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA