Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Virus Res ; 349: 199455, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181453

RESUMEN

The growing threat of viral infections requires innovative therapeutic approaches to safeguard human health. Nanomaterials emerge as a promising solution to overcome the limitations associated with conventional therapies. The eco-friendly synthesis of silver nanoparticles (AgNPs) currently represents a method that guarantees antimicrobial efficacy, safety, and cost-effectiveness. This study explores the use of AgNPs derived from the peel (Lp-AgNPs) and juice (Lj-AgNPs) Citrus limon "Ovale di Sorrento", cultivars of the Campania region. The antiviral potential was tested against viruses belonging to the Coronaviridae and Herpesviridae. AgNPs were synthesized by reduction method using silver nitrate solution mixed with aqueous extract of C. limon peel and juice. The formation of Lp-AgNPs and Lj-AgNPs was assessed using a UV-Vis spectrophotometer. The size, ζ-potential, concentration, and morphology of AgNPs were evaluated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and field emission-scanning electron microscopy (FE-SEM). Cytotoxicity was evaluated in a concentration range between 500 and 7.8 µg/mL on VERO-76 and HaCaT cells, with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium test bromide (MTT). Antiviral activity consisted of virus pre-treatment, co-treatment, cellular pre-treatment, and post-infection tests versus HSV-1 and SARS-CoV-2 at a multiplicity of infections (MOI) of 0.01. Plaque reduction assays and real-time PCR provided data on the antiviral potential of tested compounds. Lp-AgNPs and Lj-AgNPs exhibited spherical morphology with respective diameters of 60 and 92 nm with concentrations of 4.22 and 4.84 × 1010 particles/mL, respectively. The MTT data demonstrated minimal cytotoxicity, with 50 % cytotoxic concentrations (CC50) of Lp-AgNPs and Lj-AgNPs against VERO cells of 754.6 and 486.7 µg/mL. Similarly, CC50 values against HaCaT were 457.3 µg/mL for Lp-AgNPs and 339.6 µg/mL for Lj-AgNPs, respectively. In the virus pre-treatment assay, 90 % inhibitory concentrations of HSV-1 and SARS-CoV-2 were 8.54-135.04 µg/mL for Lp-AgNPs and 6.13-186.77 µg/mL for Lj-AgNPs, respectively. The molecular investigation confirmed the antiviral data, recording a reduction in the UL54 and UL27 genes for HSV-1 and in the Spike (S) gene for SARS-CoV-2, following AgNP exposure. The results of this study suggest that Lp-AgNPs and Lj-AgNPs derived from C. Limon could offer a valid ecological, natural, local and safe strategy against viral infections.

2.
Microb Pathog ; 194: 106835, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39117014

RESUMEN

Candida albicans is an opportunistic yeast accounting for about 50-90 % of all cases of candidiasis in humans, ranging from superficial to systemic potentially life-threatening infections. The presence of several virulence factors, including biofilm, hyphal transition, and proteolytic enzymes production, worsens the fungal infections burden on healthcare system resources. Hence, developing new bioactive compounds with antifungal activity is a pressing urgence for the scientific community. In this perspective, we evaluated the anti-Candida potential of the N-Nitroso-N-phenylhydroxylamine ammonium salt (cupferron) against standard and clinical C. albicans strains. Firstly, the in vitro cytotoxicity of cupferron was checked in the range 400-12.5 µg/mL against human microglial cells (HMC-3). Secondly, its antifungal spectrum was explored via disk diffusion test, broth-microdilution method, and time-killing curve analysis, validating the obtained results through scanning electron microscopy (SEM) observations. Additionally, we evaluated the cupferron impact on the main virulence determinants of Candida albicans. At non-toxic concentrations (100-12.5 µg/mL), the compound exerted interesting anti-Candida activity, registering a minimum inhibitory concentration (MIC) between 50 and 100 µg/mL against the tested strains, with a fungistatic effect until 100 µg/mL. Furthermore, cupferron was able to counteract fungal virulence at MIC and sub-MIC values (50-12.5 µg/mL). These findings may propose cupferron as a new potential antifungal option for the treatment of Candida albicans infections.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Pruebas de Sensibilidad Microbiana , Candida albicans/efectos de los fármacos , Antifúngicos/farmacología , Humanos , Biopelículas/efectos de los fármacos , Candidiasis/microbiología , Candidiasis/tratamiento farmacológico , Factores de Virulencia , Línea Celular , Hifa/efectos de los fármacos , Microscopía Electrónica de Rastreo , Virulencia/efectos de los fármacos , Proteínas Fúngicas/metabolismo
3.
Microorganisms ; 12(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39065235

RESUMEN

The nasopharyngeal tract contains a complex microbial community essential to maintaining host homeostasis. Recent studies have shown that SARS-CoV-2 infection changes the microbial composition of the nasopharynx. Still, little is known about how it affects the fungal microbiome, which could provide valuable insights into disease pathogenesis. Nasopharyngeal swabs were collected from 55 patients, during three distinct COVID-19 waves that occurred in the Campania Region (southern Italy). An RNA-seq-based analysis was performed to evaluate changes in mycobiota diversity, showing variations depending on the disease's severity and the sample collection wave. The phyla Basidiomycota and Ascomycota were shown to have higher abundance in patients with severe symptoms. Furthermore, the diversity of the fungal population was greater in the second wave. Conclusion: According to our research, COVID-19 induces significant dysbiosis of the fungal microbiome, which may contribute to disease pathogenesis, and understanding its underlying mechanisms could contribute to developing effective treatments.

4.
J Clin Med ; 13(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38999431

RESUMEN

Background: Highly Active Antiretroviral Therapy (HAART) for HIV infection and Direct-Acting Antivirals (DAA) for HCV infection currently represent the main treatment options for HIV/HCV co-infected patients. However, HAART has been associated with increased lipids. This study aimed to evaluate lipid profile changes after the DAA cycle in HIV/HCV co-infected patients undergoing HAART/DAA therapy. Methods: A prospective, longitudinal, observational study among HIV/HCV co-infected patients undergoing HAART/DAA treatment was conducted at the Infectious Diseases Unit of the University Hospital of Salerno. Inclusion criteria were age > 18 years, written informed consent, completion of the DAA cycle, and virologic suppression on HAART. Changes in the lipid profile were analyzed from baseline during and after DAA therapy at 12, 24, and 48 weeks after the sustained virologic response (SVR). A t-test was used to compare continuous variables. An analysis of variance was performed for each antiretroviral drug and genotype. Results: Fifty-four HIV/HCV patients (men/women n. 34/20 [68/32%], median age 56 years), all naïve to HCV therapy, were enrolled. HCV infection was caused by genotype 1 in 55% of cases and by genotype 3 in 29%. An increase in total cholesterol was recorded after the DAA treatment (from 165.03 ± 46.5 to 184.7 ± 44.9 mg/dL, p < 0.0001), after 12, 24, and 48 weeks, and in LDL-C at 24 weeks follow-up (at baseline 86.7 ± 34 mg/dL to 103.4 ± 41.38 mg/dL, p < 0.0001). Conclusions: Changes in the lipid profile after combined DAA/HAART treatment represent an important prognostic index. Further evaluation of cardiovascular-associated risk is necessary to implement appropriate prevention strategies.

5.
Can J Infect Dis Med Microbiol ; 2024: 5548434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698837

RESUMEN

Infections caused by antibiotic-resistant bacteria represent a serious threat to global public health. Recently, due to its increased resistance to carbapenems and ß-lactams, Klebsiella pneumoniae has become one of the main causes of septicemia, pneumonia, and urinary tract infections. It is crucial to take immediate action and implement effective measures to prevent further spread of this issue. This study aims to report the prevalence and antibiotic resistance rates of K. pneumoniae strains isolated from clinical specimens from 2015 to 2020 at the University Hospital of Salerno, Italy. More than 3,800 isolates were collected from urine cultures, blood cultures, respiratory samples, and others. K. pneumoniae isolates showed broad resistance to penicillin and cephalosporins, and increased susceptibility to fosfomycin and gentamicin. Extended spectrum beta-lactamase (ESBL) isolates accounted for 20-22%. A high percentage of strains tested were resistant to carbapenems, with an average of 40% to meropenem and 44% to ertapenem. The production of ESBLs and resistance to carbapenems is one of the major public health problems. Constant monitoring of drug-resistant isolates is crucial for developing practical approaches in implementing antimicrobial therapy and reducing the spread of K. pneumoniae in nosocomial environments.

6.
Materials (Basel) ; 17(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38793245

RESUMEN

Metal and metal oxide nanostructured materials have been chemically and physically characterized and tested concerning methylene blue (MB) photoremoval and UV antibacterial activity against Escherichia coli and Staphylococcus aureus. In detail, silver nanoparticles and commercial BaTiO3 nanoparticles were modified to obtain nanocomposites through sonicated sol-gel TiO2 synthesis and the photodeposition of Ag nanoparticles, respectively. The characterization results of pristine nanomaterials and synthetized photocatalysts revealed significant differences in specific surface area (SSA), the presence of impurities in commercial Ag nanoparticles, an anatase phase with brookite traces for TiO2-based nanomaterials, and a mixed cubic-tetragonal phase for BaTiO3. Silver nanoparticles exhibited superior antibacterial activity at different dosages; however, they were inactive in the photoremoval of the dye. The silver-TiOx nanocomposite demonstrated an activity in the UV photodegradation of MB and UV inhibition of bacterial growth. Specifically, TiO2/AgNP (30-50 nm) reduced growth by 487.5 and 1.1 × 103 times for Escherichia coli and Staphylococcus aureus, respectively, at a dose of 500 µg/mL under UV irradiation.

7.
Nat Prod Res ; : 1-14, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557224

RESUMEN

The discovery of natural molecules with antimicrobial properties has become an urgent need for the global treatment of bacterium and virus infections. Cistus incanus, a Mediterranean shrub species, represents a valuable source of phytochemicals with an interesting wide-spectrum antimicrobial potential. In this study, we analysed the spectrum of molecules composing a commercial hydroalcoholic extract of C. incanus finding ellagitannins as the most abundant. The effect of the extract and its main constituents (gallic acid, ellagic acid and punicalin) was assessed as co-treatment during viral (HSV-1, HCoV-229E, SARS-CoV-2) and bacterial infection (Staphylococcus aureus and Escherichia coli) of cells and as pre-treatment before virus infections. The results indicated a remarkable antiviral activity of punicalin against SARS-CoV-2 by pre-treating both the viral and the host cells, and a major sensitivity of S. aureus to the C. incanus extract compared to E. coli. The present study highlights broad antimicrobial potential of C. incanus extract.

8.
Heliyon ; 10(8): e29017, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644830

RESUMEN

The programmed cell death pathways of apoptosis are important in mammalian cellular protection from infections. The activation of these pathways depends on the presence of membrane receptors that bind bacterial components to activate the transduction mechanism. In addition to bacteria, these mechanisms can be activated by outer membrane vesicles (OMVs). OMVs are spherical vesicles of 20-250 nm diameter, constitutively released by Gram-negative bacteria. They contain several bacterial determinants including proteins, DNA/RNA and proteins, that activate different cellular processes in host cells. This study focused on Klebsiella pneumoniae-OMVs in activating death mechanisms in human bronchial epithelial cells (BEAS-2B). Characterization of purified OMVs was achieved by scanning electron microscopy, nanoparticle tracking analysis and protein profiling. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay while apoptotic induction was measured by flow cytometry and confirmed by western blotting. The OMVs produced showed a spherical morphology, with a diameter of 137.2 ± 41 nm and a vesicular density of 7.8 × 109 particles/mL Exposure of cell monolayers to 50 µg of K. pneumoniae-OMV for 14 h resulted in approximately 25 % cytotoxicity and 41.15-41.14 % of cells undergoing early and late apoptosis. Fluorescence microscopy revealed reduced cellular density, the presence of apoptotic bodies, chromatin condensation, and nuclear membrane blebbing in residual cells. Activation of caspases -3 and -9 and dysregulation of BAX, BIM and Bcl-xL indicated the activation of mitochondria-dependent apoptosis. Furthermore, a decrease in the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase involved endoplasmic reticulum stress with the potential formation of reactive oxygen species. These findings provide evidence for the role of OMVs in apoptosis and involvement in the pathogenesis of K. pneumoniae infections.

9.
Microorganisms ; 12(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674764

RESUMEN

The spread of antibiotic-resistant bacteria and the rise of emerging and re-emerging viruses in recent years constitute significant public health problems. Therefore, it is necessary to develop new antimicrobial strategies to overcome these challenges. Herein, we describe an innovative method to synthesize ligand-free silver nanoparticles by Pulsed Laser Ablation in Liquid (PLAL-AgNPs). Thus produced, nanoparticles were characterized by total X-ray fluorescence, zeta potential analysis, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate the nanoparticles' cytotoxicity. Their potential was evaluated against the enveloped herpes simplex virus type 1 (HSV-1) and the naked poliovirus type 1 (PV-1) by plaque reduction assays and confirmed by real-time PCR and fluorescence microscopy, showing that nanoparticles interfered with the early stage of infection. Their action was also examined against different bacteria. We observed that the PLAL-AgNPs exerted a strong effect against both methicillin-resistant Staphylococcus aureus (S. aureus MRSA) and Escherichia coli (E. coli) producing extended-spectrum ß-lactamase (ESBL). In detail, the PLAL-AgNPs exhibited a bacteriostatic action against S. aureus and a bactericidal activity against E. coli. Finally, we proved that the PLAL-AgNPs were able to inhibit/degrade the biofilm of S. aureus and E. coli.

10.
Antibiotics (Basel) ; 13(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38666999

RESUMEN

The spread of antibiotic resistance represents a serious worldwide public health issue, underscoring the importance of epidemiology research in determining antimicrobial strategies. The purpose of this research was to investigate antibiotic resistance in Serratia marcescens isolates from clinical samples over seven years at the University Hospital "San Giovanni di Dio e Ruggi d'Aragona" in Salerno, Italy. S. marcescens is an important opportunistic pathogen associated with a wide spectrum of clinical diseases, including pneumonia, keratitis, meningitis, and urinary tract and wound infections. Outbreaks of nosocomial infections by S. marcescens strains have been documented in high-risk settings, mainly affecting immunocompromised patients and newborns. The primary objective of this study is to assess the rates of antibiotic resistance over the years to deal with a future emergency which includes the failure of various therapies due to antibiotic resistance. During the investigation, a total of 396 species of S. marcescens were isolated from various clinical samples, mainly from broncho-aspirates and sputum (31.6%) and blood cultures (21.5%). Antibiotics that showed the greatest susceptibility included ceftazidime/avibactam, amikacin, trimethoprim/sulfamethoxazole, and selected members of the cephalosporin class. However, a disconcerting trend of increasing rates of carbapenem resistance was outlined over the observation period. The absence of effective countermeasures, combined with growing antibiotic resistance that negates the effectiveness of multiple antibiotics, highlights the potential for S. marcescens infections to trigger serious clinical complications and increased mortality rates. The surveillance of Serratia marcescens infections constitutes a pivotal element in refining empiric therapy to mitigate the dissemination of antimicrobial resistance.

11.
Mol Cancer ; 23(1): 63, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528526

RESUMEN

Efficient predictive biomarkers are needed for immune checkpoint inhibitor (ICI)-based immunotherapy in non-small cell lung cancer (NSCLC). Testing the predictive value of single nucleotide polymorphisms (SNPs) in programmed cell death 1 (PD-1) or its ligand 1 (PD-L1) has shown contrasting results. Here, we aim to validate the predictive value of PD-L1 SNPs in advanced NSCLC patients treated with ICIs as well as to define the molecular mechanisms underlying the role of the identified SNP candidate. rs822336 efficiently predicted response to anti-PD-1/PD-L1 immunotherapy in advanced non-oncogene addicted NSCLC patients as compared to rs2282055 and rs4143815. rs822336 mapped to the promoter/enhancer region of PD-L1, differentially affecting the induction of PD-L1 expression in human NSCLC cell lines as well as their susceptibility to HLA class I antigen matched PBMCs incubated with anti-PD-1 monoclonal antibody nivolumab. The induction of PD-L1 expression by rs822336 was mediated by a competitive allele-specificity binding of two identified transcription factors: C/EBPß and NFIC. As a result, silencing of C/EBPß and NFIC differentially regulated the induction of PD-L1 expression in human NSCLC cell lines carrying different rs822336 genotypes. Analysis by binding microarray further validated the competitive allele-specificity binding of C/EBPß and NFIC to PD-L1 promoter/enhancer region based on rs822336 genotype in human NSCLC cell lines. These findings have high clinical relevance since identify rs822336 and induction of PD-L1 expression as novel biomarkers for predicting anti-PD-1/PD-L1-based immunotherapy in advanced NSCLC patients.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Factores de Transcripción NFI/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
12.
Sci Data ; 11(1): 220, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374088

RESUMEN

Tuberculosis (TB) is one of the deadliest infectious disorders in the world. To effectively TB manage, an essential step is to gain insight into the lineage of Mycobacterium tuberculosis (MTB) and the distribution of drug resistance. Although the Campania region is declared a cluster area for the infection, to contribute to the effort to understand TB evolution and transmission, still poorly known, we have generated a dataset of 159 genomes of MTB strains, from Campania region collected during 2018-2021, obtained from the analysis of whole genome sequence. The results show that the most frequent MTB lineage is the 4 according for 129 strains (81.11%). Regarding drug resistance, 139 strains (87.4%) were classified as multi susceptible, while the remaining 20 (12.58%) showed drug resistance. Among the drug-resistance strains, 8 were isoniazid-resistant MTB, 4 multidrug-resistant MTB, while only one was classified as pre-extensively drug-resistant MTB. This dataset expands the existing available knowledge on drug resistance and evolution of MTB, contributing to further TB-related genomics studies to improve the management of this disease.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
13.
Cancers (Basel) ; 15(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38067244

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common oral cavity malignancy associated with multiple risk factors. In the last 14 years, oral dysbiosis has attracted the scientific community's attention as a potential oncogenic factor, in parallel with the development of omics technologies that have revolutionized microbiological research. The present umbrella review aimed to investigate the oral microbiological content (bacilli, viruses, and fungi) of tissue and saliva samples from adult (>18 years) patients with OSCC. The secondary objective was to compare the oral microbiome of OSCC subjects with non-OSCC subjects. The study protocol was under the PRISMA statement and registered on PROSPERO (CRD42023448153). Data from 32 systematic reviews were extracted, qualitatively summarized, and analyzed using AMSTAR-2. An increase in oral bacteria of the phylum Fusobacteria, Proteobacteria, and Bacteroidetes and a decrease in Firmicutes and Actinobacteria were observed in OSCC patients. The increased bacterial genera were periodontopathogens. The most common viruses were EBV and HPV, especially the high-risk genotypes. Candida was the most studied oral fungus and was always increased in OSCC subjects. Further studies should investigate the possible carcinogenic mechanisms of oral microorganisms found increased in tissue samples and saliva from adult subjects with OSCC.

14.
Cancers (Basel) ; 15(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38067286

RESUMEN

Cervical cancer ranks as the fourth most prevalent cancer among women globally, with approximately 600,000 new cases being diagnosed each year. The principal driver of cervical cancer is the human papillomavirus (HPV), where viral oncoproteins E6 and E7 undertake the role of driving its carcinogenic potential. Despite extensive investigative efforts, numerous facets concerning HPV infection, replication, and pathogenesis remain shrouded in uncertainty. The virus operates through a variety of epigenetic mechanisms, and the epigenetic signature of HPV-related tumors is a major bottleneck in our understanding of the disease. Recent investigations have unveiled the capacity of viral oncoproteins to influence epigenetic changes within HPV-related tumors, and conversely, these tumors exert an influence on the surrounding epigenetic landscape. Given the escalating occurrence of HPV-triggered tumors and the deficiency of efficacious treatments, substantial challenges emerge. A promising avenue to address this challenge lies in epigenetic modulators. This review aggregates and dissects potential epigenetic modulators capable of combatting HPV-associated infections and diseases. By delving into these modulators, novel avenues for therapeutic interventions against HPV-linked cancers have come to the fore.

15.
Nutrients ; 15(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068757

RESUMEN

BACKGROUND: Strategies for diagnosing celiac disease (CD) include case-finding and population-screening programs. Case finding consists of testing individuals at increased risk for the disease due to symptoms or associated conditions. Screening programs are widespread campaigns, which definitely perform better in terms of unveiling CD diagnoses but nowadays are still debatable. The global prevalence of CD is around 1% but it almost doubles when considering screening programs among school children. Within this framework, we aimed to estimate the prevalence of CD among hospitalized children in the Pediatric Department of a Southern Italy University Hospital in the period from January 2018 through December 2021. In addition, we attempted to explore, at the time of diagnosis, the prevalence of leading clinical alerts due to malabsorption/malnutrition such as anemia or failure to thrive or due to systemic inflammation/immune dysfunction as hypertransaminasemia and thyroid dysfunction. METHODS: Data records of pediatric patients admitted as inpatients and tested by anti-transglutaminase IgA antibodies (TGA-IgA) were retrospectively analyzed. CD was diagnosed according to either 2012 or 2020 ESPGHAN guidelines, depending on the year of diagnosis. CD autoimmunity (CDA) was a wider group defined within our protocol if patients had elevated TGA-IgA on at least one occasion, regardless of anti-endomysial antibodies (EMA-IgA) and without biopsy confirmation. RESULTS: During the observation period, 3608 pediatric patients were admitted and 1320 were screened for CD (median age 5 years, IQR 2-9 years; CD test rate: 36.6% out of all admissions). The available prevalence of newly diagnosed CD was 1.59% (21 patients diagnosed) and the available prevalence of CDA was 3.86% (51 subjects). Among CD patients, underweight/malnourished children accounted for 28.6% (6 out of 21). CONCLUSIONS: The estimated prevalence of CD diagnoses within our setting was comparable to the most recent population-screening programs. The estimated prevalence of CDA was even higher. A hospital-admission CD testing during routine blood draws might be a non-invasive, cost-effective and valuable approach to reduce discrepancy of prevalence between case-finding and population-screening programs.


Asunto(s)
Enfermedad Celíaca , Humanos , Niño , Preescolar , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/epidemiología , Enfermedad Celíaca/complicaciones , Estudios Retrospectivos , Niño Hospitalizado , Autoanticuerpos , Transglutaminasas , Inmunoglobulina A
16.
Antibiotics (Basel) ; 12(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38136724

RESUMEN

Root canal treatment represents a significant challenge as current cleaning and disinfection methodologies fail to remove persistent bacterial biofilms within the intricate anatomical structures. Recently, the field of nanotechnology has emerged as a promising frontier with numerous biomedical applications. Among the most notable contributions of nanotechnology are nanoparticles, which possess antimicrobial, antifungal, and antiviral properties. Nanoparticles cause the destructuring of bacterial walls, increasing the permeability of the cell membrane, stimulating the generation of reactive oxygen species, and interrupting the replication of deoxyribonucleic acid through the controlled release of ions. Thus, they could revolutionize endodontics, obtaining superior results and guaranteeing a promising short- and long-term prognosis. Therefore, chitosan, silver, graphene, poly(lactic) co-glycolic acid, bioactive glass, mesoporous calcium silicate, hydroxyapatite, zirconia, glucose oxidase magnetic, copper, and zinc oxide nanoparticles in endodontic therapy have been investigated in the present review. The diversified antimicrobial mechanisms of action, the numerous applications, and the high degree of clinical safety could encourage the scientific community to adopt nanoparticles as potential drugs for the treatment of endodontic diseases, overcoming the limitations related to antibiotic resistance and eradication of the biofilm.

17.
J Med Virol ; 95(11): e29193, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37927140

RESUMEN

Since the beginning of the pandemic, SARS-CoV-2 has shown a great genomic variability, resulting in the continuous emergence of new variants that has made their global monitoring and study a priority. This work aimed to study the genomic heterogeneity, the temporal origin, the rate of viral evolution and the population dynamics of the main circulating variants (20E.EU1, Alpha and Delta) in Italy, in August 2020-January 2022 period. For phylogenetic analyses, three datasets were set up, each for a different main lineage/variant circulating in Italy in that time including other Italian and International sequences of the same lineage/variant, available in GISAID sampled in the same times. The international dataset showed 26 (23% Italians, 23% singleton, 54% mixed), 40 (60% mixed, 37.5% Italians, 1 singleton) and 42 (85.7% mixed, 9.5% singleton, 4.8% Italians) clusters with at least one Italian sequence, in 20E.EU1  clade, Alpha and Delta variants, respectively. The estimation of tMRCAs in the Italian clusters (including >70% of genomes from Italy) showed that in all the lineage/variant, the earliest clusters were the largest in size and the most persistent in time and frequently mixed. Isolates from the major Italian Islands tended to segregate in clusters more frequently than those from other part of Italy. The study of infection dynamics showed a positive correlation between the trend in the effective number of infections estimated by BSP model and the Re curves estimated by birth-death skyline plot. The present work highlighted different evolutionary dynamics of studied lineages with high concordance between epidemiological parameters estimation and phylodynamic trends suggesting that the mechanism of replacement of the SARS-CoV-2 variants must be related to a complex of factors involving the transmissibility, as well as the implementation of control measures, and the level of cross-immunization within the population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Filogenia , COVID-19/epidemiología , Genómica , Italia/epidemiología
18.
Clin Exp Med ; 23(8): 4943-4953, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898572

RESUMEN

SARS-CoV-2 and its variants cause CoronaVIrus Disease 19 (COVID-19), a pandemic disease. Hematological malignancies increase susceptibility to severe COVID-19 due to immunosuppression. Anti-SARS-CoV-2 neutralizing antibodies protect against severe COVID-19. This retrospective real-life study aimed to evaluate seropositivity and neutralizing antibody rates against SARS-CoV-2 and its Omicron BA.1 variant in hematological patients. A total of 106 patients with different hematologic malignancies, who have mostly received three or more vaccine doses (73%), were included in this study. Serum was collected between May and June 2022. The primary endpoint was anti-SARS-CoV-2 antibody response against ancestral (wild type; wt) and Omicron BA.1 virus, defined as a neutralizing antibody titer ≥ 1:10. Adequate neutralizing antibody response was observed in 75 (71%) and 87 (82%) of patients for wt and Omicron BA.1 variants, respectively.However, patients with B-cell lymphoproliferative disorders and/or those treated with anti-CD20 monoclonal antibodies in the prior 12 months showed a lower seropositivity rate compared to other patients against both Omicron BA.1 variant (73% vs 91%; P = 0.02) and wt virus (64% vs 78%; P = 0.16). Our real-life experience confirmed that full vaccination against SARS-CoV-2 induces adequate neutralizing antibody protection for both the wt virus and Omicron BA.1 variants, even in hematological frail patients. However, protective measures should be maintained in hematological patients, especially those with B-cell lymphoproliferative diseases treated with anti-CD20 monoclonal antibodies, because these subjects could have a reduced neutralizing antibody production.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Humanos , SARS-CoV-2 , Anticuerpos Neutralizantes , COVID-19/prevención & control , Estudios Retrospectivos , Anticuerpos Antivirales , Anticuerpos Monoclonales
19.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37796875

RESUMEN

AIMS: Multidrug resistance is a worrying problem worldwide. The lack of readily available drugs to counter nosocomial infections requires the need for new interventional strategies. Drug repurposing represents a valid alternative to using commercial molecules as antimicrobial agents in a short time and with low costs. Contextually, the present study focused on the antibacterial potential of the ammonium salt N-nitroso-N-phenylhydroxylamine (Cupferron), evaluating the ability to inhibit microbial growth and influence the main virulence factors. METHODS AND RESULTS: Cupferron cytotoxicity was checked via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and hemolysis assays. The antimicrobial activity was assessed through the Kirby-Bauer disk diffusion test, broth microdilution method, and time-killing kinetics. Furthermore, the impact on different stages of the biofilm life cycle, catalase, swimming, and swarming motility was estimated via MTT and crystal violet (CV) assay, H2O2 sensitivity, and motility tests, respectively. Cupferron exhibited <15% cytotoxicity at 200 µg/mL concentration. The 90% bacterial growth inhibitory concentrations (MIC90) values recorded after 24 hours of exposure were 200 and 100 µg/mL for multidrug-resistant (MDR) and sensitive strains, respectively, exerting a bacteriostatic action. Cupferron-treated bacteria showed increased susceptibility to biofilm production, oxidative stress, and impaired bacterial motility in a dose-dependent manner. CONCLUSIONS: In the new antimicrobial compounds active research scenario, the results indicated that Cupferron could be an interesting candidate for tackling Escherichia coli infections.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Virulencia , Peróxido de Hidrógeno , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Biopelículas
20.
Microorganisms ; 11(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37764086

RESUMEN

The emergence of multidrug-resistant strains requires the urgent discovery of new antibacterial drugs. In this context, an antibacterial screening of a subset of anthelmintic avermectins against gram-positive and gram-negative strains was performed. Selamectin completely inhibited bacterial growth at 6.3 µg/mL concentrations against reference gram-positive strains, while no antibacterial activity was found against gram-negative strains up to the highest concentration tested of 50 µg/mL. Given its relevance as a community and hospital pathogen, further studies have been performed on selamectin activity against Staphylococcus aureus (S. aureus), using clinical isolates with different antibiotic resistance profiles and a reference biofilm-producing strain. Antibacterial studies have been extensive on clinical S. aureus isolates with different antibiotic resistance profiles. Mean MIC90 values of 6.2 µg/mL were reported for all tested S. aureus strains, except for the macrolide-resistant isolate with constitutive macrolide-lincosamide-streptogramin B resistance phenotype (MIC90 9.9 µg/mL). Scanning Electron Microscopy (SEM) showed that selamectin exposure caused relevant cell surface alterations. A synergistic effect was observed between ampicillin and selamectin, dictated by an FIC value of 0.5 against methicillin-resistant strain. Drug administration at MIC concentration reduced the intracellular bacterial load by 81.3%. The effect on preformed biofilm was investigated via crystal violet and confocal laser scanning microscopy. Selamectin reduced the biofilm biomass in a dose-dependent manner with minimal biofilm eradication concentrations inducing a 50% eradication (MBEC50) at 5.89 µg/mL. The cytotoxic tests indicated that selamectin exhibited no relevant hemolytic and cytotoxic activity at active concentrations. These data suggest that selamectin may represent a timely and promising macrocyclic lactone for the treatment of S. aureus infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA