Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 666: 1301-1315, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30970495

RESUMEN

Recent work has shown that leaf traits and spectral properties change through time and/or seasonally as leaves age. Current field and hyperspectral methods used to estimate canopy leaf traits could, therefore, be significantly biased by variation in leaf age. To explore the magnitude of this effect, we used a phenological dataset comprised of leaves of different leaf age groups -developmental, mature, senescent and mixed-age- from canopy and emergent tropical trees in southern Peru. We tested the performance of partial least squares regression models developed from these different age groups when predicting traits for leaves of different ages on both a mass and area basis. Overall, area-based models outperformed mass-based models with a striking improvement in prediction observed for area-based leaf carbon (Carea) estimates. We observed trait-specific age effects in all mass-based models while area-based models displayed age effects in mixed-age leaf groups for Parea and Narea. Spectral coefficients and variable importance in projection (VIPs) also reflected age effects. Both mass- and area-based models for all five leaf traits displayed age/temporal sensitivity when we tested their ability to predict the traits of leaves of other age groups. Importantly, mass-based mature models displayed the worst overall performance when predicting the traits of leaves from other age groups. These results indicate that the widely adopted approach of using fully expanded mature leaves to calibrate models that estimate remotely-sensed tree canopy traits introduces error that can bias results depending on the phenological stage of canopy leaves. To achieve temporally stable models, spectroscopic studies should consider producing area-based estimates as well as calibrating models with leaves of different age groups as they present themselves through the growing season. We discuss the implications of this for surveys of canopies with synchronised and unsynchronised leaf phenology.


Asunto(s)
Fenotipo , Hojas de la Planta/fisiología , Carbono/análisis , Análisis de los Mínimos Cuadrados , Modelos Biológicos , Perú , Hojas de la Planta/crecimiento & desarrollo , Estaciones del Año , Análisis Espectral
2.
New Phytol ; 214(3): 1049-1063, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-26877108

RESUMEN

Leaf aging is a fundamental driver of changes in leaf traits, thereby regulating ecosystem processes and remotely sensed canopy dynamics. We explore leaf reflectance as a tool to monitor leaf age and develop a spectra-based partial least squares regression (PLSR) model to predict age using data from a phenological study of 1099 leaves from 12 lowland Amazonian canopy trees in southern Peru. Results demonstrated monotonic decreases in leaf water (LWC) and phosphorus (Pmass ) contents and an increase in leaf mass per unit area (LMA) with age across trees; leaf nitrogen (Nmass ) and carbon (Cmass ) contents showed monotonic but tree-specific age responses. We observed large age-related variation in leaf spectra across trees. A spectra-based model was more accurate in predicting leaf age (R2  = 0.86; percent root mean square error (%RMSE) = 33) compared with trait-based models using single (R2  = 0.07-0.73; %RMSE = 7-38) and multiple (R2  = 0.76; %RMSE = 28) predictors. Spectra- and trait-based models established a physiochemical basis for the spectral age model. Vegetation indices (VIs) including the normalized difference vegetation index (NDVI), enhanced vegetation index 2 (EVI2), normalized difference water index (NDWI) and photosynthetic reflectance index (PRI) were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.


Asunto(s)
Fenómenos Químicos , Luz , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Árboles/fisiología , Ecosistema , Análisis de los Mínimos Cuadrados , Modelos Teóricos , Perú , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Tecnología de Sensores Remotos , Comunicaciones por Satélite , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA