Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 291(53): 27170-27186, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27864365

RESUMEN

Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot, J. L., and Engelman, D. M. (1990) Biochemistry 29, 4031-4037) is postulated to proceed in 2 steps: partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two, and the first three transmembrane (TM) segments, as well as a construct comprising TM1-TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significantly stabilized upon interaction with TM2, forming a helical hairpin reported previously (Neumoin, A., Cohen, L. S., Arshava, B., Tantry, S., Becker, J. M., Zerbe, O., and Naider, F. (2009) Biophys. J. 96, 3187-3196), and in this case the protein integrates into the hydrophobic interior of the micelle. TM123 displays a strong tendency to oligomerize, but hydrogen exchange data reveal that the center of TM3 is solvent exposed. In all GPCRs so-far structurally characterized TM7 forms many contacts with TM1 and TM2. In our study TM127 integrates well into the hydrophobic environment, but TM7 does not stably pack against the remaining helices. Topology mapping in microsomal membranes also indicates that TM1 does not integrate in a membrane-spanning fashion, but that TM12, TM123, and TM127 adopt predominantly native-like topologies. The data from our study would be consistent with the retention of individual helices of incompletely synthesized GPCRs in the vicinity of the translocon until the complete receptor is released into the membrane interior.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Fragmentos de Péptidos/química , Receptores del Factor de Conjugación/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Micelas , Conformación Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido
2.
J Pept Sci ; 21(3): 212-22, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25645975

RESUMEN

This report summarizes recent biophysical and protein expression experiments on polypeptides containing the N-terminus, the first, second, and third transmembrane (TM) domains and the contiguous loops of the α-factor receptor Ste2p, a G protein-coupled receptor. The 131-residue polypeptide Ste2p(G31-R161), TM1-TM3, was investigated by solution NMR in trifluoroethanol/water. TM1-TM3 contains helical TM domains at the predicted locations, supported by continuous sets of medium-range NOEs. In addition, a short helix N-terminal to TM1 was detected, as well as a short helical stretch in the first extracellular loop. Two 161-residue polypeptides, [Ste2p(M1-R161), NT-TM1-TM3], that contain the entire N-terminal sequence, one with a single mutation, were directly expressed and isolated from Escherichia coli in yields as high as 30 mg/L. Based on its increased stability, the L11P mutant will be used in future experiments to determine long-range interactions. The study demonstrated that 3-TM domains of a yeast G protein-coupled receptor can be produced in isotopically labeled form suitable for solution NMR studies. The quality of spectra is superior to data recorded in micelles and allows more rapid data analysis. No tertiary contacts have been determined, and if present, they are likely transient. This observation supports earlier studies by us that secondary structure was retained in smaller fragments, both in organic solvents and in detergent micelles, but that stable tertiary contacts may only be present when the protein is imbedded in lipids.


Asunto(s)
Receptores del Factor de Conjugación/química , Proteínas de Saccharomyces cerevisiae/química , Trifluoroetanol/química , Agua/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Marcaje Isotópico , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores del Factor de Conjugación/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Termodinámica
3.
Biopolymers ; 102(3): 223-43, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24687329

RESUMEN

The structural characterization of G protein-coupled receptors has surged since the development of methodologies to facilitate the crystallization of these highly helical, seven transmembrane, integral membrane receptors. In the past seven years, eighteen GPCR structures were determined by X-ray crystallography. The crystal structures represent a static picture of these conformationally flexible signal transducers. Analyses that probe their dynamics and conformational changes require other techniques, in particular solution state nuclear magnetic resonance studies. Such investigations are challenged by the size of GPCRs, their α-helical structure, which limits resonance dispersion, their tendencies to aggregate in micellar preparations and their conformational heterogeneity. For many years, groups have been studying GPCR fragments as a means to overcome some of these difficulties. The results of these fragment analyses are presented here. Review of the literature reveals that much of the original work depended on circular dichroism, infra-red spectroscopy and fluorescence approaches. High resolution structures obtained by NMR are compared, where applicable, to the available crystal structures. In most cases, the work done on fragments by biophysical analysis is validated by these comparisons. Our perspective on the field of GPCR fragment analysis is presented together with the future goals that must be considered if work with fragments is continued.


Asunto(s)
Fragmentos de Péptidos/química , Receptores Acoplados a Proteínas G/química , Métodos Analíticos de la Preparación de la Muestra , Marcaje Isotópico , Modelos Moleculares
4.
Biopolymers ; 102(1): 16-29, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23897574

RESUMEN

Structural analysis by NMR of G protein-coupled receptors (GPCRs) has proven to be extremely challenging. To reduce the number of peaks in the NMR spectra by segmentally labeling a GPCR, we have developed a Guided Reconstitution method that includes the use of charged residues and Cys activation to drive heterodimeric disulfide bond formation. Three different cysteine-activating reagents: 5-5'-dithiobis(2-nitrobenzoic acid) [DTNB], 2,2'-dithiobis(5-nitropyridine) [DTNP], and 4,4'-dipyridyl disulfide [4-PDS] were analyzed to determine their efficiency in heterodimer formation at different pHs. Short peptides representing the N-terminal (NT) and C-terminal (CT) regions of the first extracellular loop (EL1) of Ste2p, the Saccharomyces cerevisiae alpha-factor mating receptor, were activated using these reagents and the efficiencies of activation and rates of heterodimerization were analyzed. Activation of NT peptides with DTNP and 4-PDS resulted in about 60% yield, but heterodimerization was rapid and nearly quantitative. Double transmembrane domain protein fragments were biosynthesized and used in Guided Reconstitution reactions. A 102-residue fragment, 2TM-tail [Ste2p(G31-I120C)], was heterodimerized with CT-EL1-tail(DTNP) at pH 4.6 with a yield of ∼75%. A 132-residue fragment, 2TMlong-tail [Ste2p(M1-I120C)], was expressed in both unlabeled and (15)N-labeled forms and used with a peptide comprising the third transmembrane domain, to generate a 180-residue segmentally labeled 3TM protein that was found to be segmentally labeled using [(15)N,(1)H]-HSQC analysis. Our data indicate that the Guided Reconstitution method would be applicable to the segmental labeling of a membrane protein with 3 transmembrane domains and may prove useful in the preparation of an intact reconstituted GPCR for use in biophysical analysis and structure determination.


Asunto(s)
Bioquímica/métodos , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Bromuro de Cianógeno/química , Cisteína/química , Disulfuros/metabolismo , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/aislamiento & purificación , Datos de Secuencia Molecular , Mutación/genética , Péptidos/química , Multimerización de Proteína , Receptores del Factor de Conjugación/química , Proteínas de Saccharomyces cerevisiae/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA