Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 26(9): 5217-5234, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32396692

RESUMEN

In higher-latitude trees, temperature and photoperiod control the beginning and end of the photosynthetically active season. Elevated temperature (ET) has advanced spring warming and delayed autumn cooling while photoperiod remains unchanged. We assessed the effects of warming on the length of the photosynthetically active season of three provenances of Pinus strobus L. seedlings from different latitudes, and evaluated the accuracy of the photochemical reflectance index (PRI) and the chlorophyll/carotenoid index (CCI) for tracking the predicted variation in spring and autumn phenology of photosynthesis among provenances. Seedlings from northern, local and southern P. strobus provenances were planted in a temperature-free-air-controlled enhancement (T-FACE) experiment and exposed to ET (+1.5/3°C; day/night). Over 18 months, we assessed photosynthetic phenology by measuring chlorophyll fluorescence, gas exchange, leaf spectral reflectance and pigment content. During autumn, all seedlings regardless of provenance followed the same sequence of phenological events with the initial downregulation of photosynthesis, followed by the modulation of non-photochemical quenching and associated adjustments of zeaxanthin pool sizes. However, the timing of autumn downregulation differed between provenances, with delayed onset in the southern provenance (SP) and earlier onset in the northern relative to the local provenance, indicating that photoperiod at the provenance origin is a dominant factor controlling autumn phenology. Experimental warming further delayed the downregulation of photosynthesis during autumn in the SP. A provenance effect during spring was also observed but was generally not significant. The vegetation indices PRI and CCI were both effective at tracking the seasonal variations of energy partitioning in needles and the differences of carotenoid pigments indicative of the stress status of needles. These results demonstrate that PRI and CCI can be useful tools for monitoring conifer phenology and for the remote monitoring of the length of the photosynthetically active season of conifers in a changing climate.


Asunto(s)
Fotosíntesis , Pinus , Clorofila , Fotoperiodo , Estaciones del Año , Temperatura
2.
Plant Physiol ; 172(2): 802-818, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27591187

RESUMEN

Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 µL L-1) or elevated (800 µmol mol-1) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings.


Asunto(s)
Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Pinus/fisiología , Temperatura , Adaptación Fisiológica , Metabolismo de los Hidratos de Carbono , Clorofila/metabolismo , Frío , Congelación , Immunoblotting , Espectrometría de Masas , Fotoperiodo , Pinus/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Estaciones del Año , Plantones/metabolismo , Plantones/fisiología , Factores de Tiempo
3.
Tree Physiol ; 36(3): 311-24, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26846980

RESUMEN

The photochemical reflectance index (PRI) is a proxy for the activity of the photoprotective xanthophyll cycle and photosynthetic light use efficiency (LUE) in plants. Evergreen conifers downregulate photosynthesis in autumn in response to low temperature and shorter photoperiod, and the dynamic xanthophyll cycle-mediated non-photochemical quenching (NPQ) is replaced by sustained NPQ. We hypothesized that this shift in xanthophyll cycle-dependent energy partitioning during the autumn is the cause for variations in the PRI-LUE relationship. In order to test our hypothesis, we characterized energy partitioning and pigment composition during a simulated summer-autumn transition in a conifer and assessed the effects of temperature and photoperiod on the PRI-LUE relationship. We measured gas exchange, chlorophyll fluorescence and leaf reflectance during the photosynthetic downregulation in Pinus strobus L. seedlings exposed to low temperature/short photoperiod or elevated temperature/short photoperiod conditions. Shifts in energy partitioning during simulated autumn were observed when the pools of chlorophylls decreased and pools of photoprotective carotenoids increased. On a seasonal timescale, PRI was controlled by carotenoid pool sizes rather than xanthophyll cycle dynamics. Photochemical reflectance index variation under cold autumn conditions mainly reflected long-term pigment pool adjustments associated with sustained NPQ, which impaired the PRI-LUE relationship. Exposure to warm autumn conditions prevented the induction of sustained NPQ but still impaired the PRI-LUE relationship. We therefore conclude that alternative zeaxanthin-independent NPQ mechanisms, which remain undetected by the PRI, are present under both cold and warm autumn conditions, contributing to the discrepancy in the PRI-LUE relationship during autumn.


Asunto(s)
Luz , Fotoperiodo , Fotosíntesis/efectos de la radiación , Pinus/fisiología , Pinus/efectos de la radiación , Temperatura , Dióxido de Carbono/metabolismo , Regulación hacia Abajo/efectos de la radiación , Modelos Lineales , Pigmentos Biológicos/metabolismo , Estaciones del Año , Factores de Tiempo
4.
J Exp Bot ; 66(22): 7309-23, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26386258

RESUMEN

In evergreen conifers, the winter down-regulation of photosynthesis and its recovery during spring are the result of a reorganization of the chloroplast and adjustments of energy-quenching mechanisms. These phenological changes may remain undetected by remote sensing, as conifers retain green foliage during periods of photosynthetic down-regulation. The aim was to assess if the timing of the spring recovery of photosynthesis and energy-quenching characteristics are accurately monitored by the photochemical reflectance index (PRI) in the evergreen conifer Pinus strobus. The recovery of photosynthesis was studied using chlorophyll fluorescence, leaf gas exchange, leaf spectral reflectance, and photosynthetic pigment measurements. To assess if climate change might affect the recovery of photosynthesis, seedlings were exposed to cold spring conditions or warm spring conditions with elevated temperature. An early spring decoupling of the relationship between photosynthesis and PRI in both treatments was observed. This was caused by differences between the timing of the recovery of photosynthesis and the timing of carotenoid and chlorophyll pool size adjustments which are the main factors controlling PRI during spring. It was also demonstrated that zeaxanthin-independent NPQ mechanisms undetected by PRI further contributed to the early spring decoupling of the PRI-LUE relationship. An important mechanism undetected by PRI seems to involve increased electron transport around photosystem I, which was a significant energy sink during the entire spring transition, particularly in needles exposed to a combination of high light and cold temperatures.


Asunto(s)
Fotosíntesis , Pinus/fisiología , Estaciones del Año , Zeaxantinas , Electrones , Metabolismo Energético , Fotoquímica , Temperatura
5.
Tree Physiol ; 31(11): 1204-16, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22021010

RESUMEN

Future climate will alter the soil cover of mosses and snow depths in the boreal forests of eastern Canada. In field manipulation experiments, we assessed the effects of varying moss and snow depths on the physiology of black spruce (Picea -mariana (Mill.) B.S.P.) and trembling aspen (Populus tremuloides Michx.) in the boreal black spruce forest of western Québec. For 1 year, naturally regenerated 10-year-old spruce and aspen were grown with one of the following treatments: additional N fertilization, addition of sphagnum moss cover, removal of mosses, delayed soil thawing through snow and hay addition, or accelerated soil thawing through springtime snow removal. Treatments that involved the addition of insulating moss or snow in the spring caused lower soil temperature, while removing moss and snow in the spring caused elevated soil temperature and thus had a warming effect. Soil warming treatments were associated with greater temperature variability. Additional soil cover, whether moss or snow, increased the rate of photosynthetic recovery in the spring. Moss and snow removal, on the other hand, had the opposite effect and lowered photosynthetic activity, especially in spruce. Maximal electron transport rate (ETR(max)) was, for spruce, 39.5% lower after moss removal than with moss addition, and 16.3% lower with accelerated thawing than with delayed thawing. Impaired photosynthetic recovery in the absence of insulating moss or snow covers was associated with lower foliar N concentrations. Both species were affected in that way, but trembling aspen generally reacted less strongly to all treatments. Our results indicate that a clear negative response of black spruce to changes in root-zone temperature should be anticipated in a future climate. Reduced moss cover and snow depth could adversely affect the photosynthetic capacities of black spruce, while having only minor effects on trembling aspen.


Asunto(s)
Aclimatación , Calentamiento Global , Fotosíntesis , Picea/fisiología , Populus/fisiología , Suelo , Temperatura , Canadá , Clima , Ecosistema , Transporte de Electrón , Ambiente , Congelación , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas , Estaciones del Año , Sphagnopsida , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA