Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Public Health ; 105(6): 1168-73, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25880936

RESUMEN

OBJECTIVES: We determined whether statistical text mining (STM) can identify fall-related injuries in electronic health record (EHR) documents and the impact on STM models of training on documents from a single or multiple facilities. METHODS: We obtained fiscal year 2007 records for Veterans Health Administration (VHA) ambulatory care clinics in the southeastern United States and Puerto Rico, resulting in a total of 26 010 documents for 1652 veterans treated for fall-related injury and 1341 matched controls. We used the results of an STM model to predict fall-related injuries at the visit and patient levels and compared them with a reference standard based on chart review. RESULTS: STM models based on training data from a single facility resulted in accuracy of 87.5% and 87.1%, F-measure of 87.0% and 90.9%, sensitivity of 92.1% and 94.1%, and specificity of 83.6% and 77.8% at the visit and patient levels, respectively. Results from training data from multiple facilities were almost identical. CONCLUSIONS: STM has the potential to improve identification of fall-related injuries in the VHA, providing a model for wider application in the evolving national EHR system.


Asunto(s)
Accidentes por Caídas/estadística & datos numéricos , Sistemas de Información en Atención Ambulatoria , Atención Ambulatoria , Minería de Datos , Adulto , Anciano , Anciano de 80 o más Años , Registros Electrónicos de Salud , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Puerto Rico/epidemiología , Sensibilidad y Especificidad , Estados Unidos/epidemiología , United States Department of Veterans Affairs
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA