RESUMEN
Using genetic, clinical, biochemical, and radiographic assessment and bioinformatic approaches, we present an unusual case of adult HPP caused by a novel de novo heterozygous nonsense mutation in the alkaline phosphatase (ALPL). INTRODUCTION: Hypophosphatasia (HPP) is caused by genetic alterations of the ALPL gene, encoding the tissue-nonspecific isozyme of alkaline phosphatase (TNSALP). Here, the purpose was to perform clinical and molecular investigation in a 36-year-old Caucasian woman suspected to present adult HPP. METHODS: Medical and dental histories were obtained for the proposita and family members, including biochemical, radiographic, and dental assessments. ALPL mutational analysis was performed by the Sanger sequencing method, and the functional impact prediction of the identified mutations was assessed by bioinformatic methods. RESULTS: We identified a novel heterozygous nonsense mutation in the ALPL gene (NM_000478.6:c.768G>A; W[TGG]>*[TGA]) associated with spontaneous vertebral fracture, severe back pain, musculoskeletal pain, low bone density, and short-rooted permanent teeth loss. Functional prediction analysis revealed that the Trp256Ter mutation led to a complete loss of TNSALP crown domain and extensive loss of other functional domains (calcium-binding domain, active site vicinity, and zinc-binding site) and over 60% loss of homodimer interface residues, suggesting that the mutant TNSALP molecules are nonfunctional and form unstable homodimers. Genotyping of the ALPL in the proposita's parents, sister, and niece revealed that in this case, HPP occurred due to a de novo mutation. CONCLUSION: The present study describes a novel genotype-phenotype and structure-function relationship for HPP, contributing to a better molecular comprehension of HPP etiology and pathophysiology.
Asunto(s)
Fosfatasa Alcalina , Hipofosfatasia , Adulto , Fosfatasa Alcalina/genética , Codón sin Sentido , Análisis Mutacional de ADN , Femenino , Heterocigoto , Humanos , Hipofosfatasia/diagnóstico por imagen , Hipofosfatasia/genética , MutaciónRESUMEN
Lipopolysaccharides are potent inflammatory mediators considered to contribute to destruction of periodontal tissues. Here, we hypothesized that Porphyromonas gingivalis lipopolysaccharide (P-LPS) treatment would regulate gene expression in murine cementoblasts through Toll-like receptor 4. Real-time (RT)-PCR and Northern blot analysis indicated that P-LPS decreased expression of transcripts for osteocalcin (OCN) and receptor activator of nuclear factor kappaB ligand (RANKL). In contrast, a dose-dependent up-regulation in mRNA levels for osteopontin (OPN) and osteoprotegerin (OPG) was observed. Similarly, ELISA demonstrated decreased RANKL and increased OPG levels. A monoclonal antibody specific for mouse TLR-4/MD-2 partially neutralized the P-LPS effect on cementoblasts. These results indicate that exposure of cementoblasts to P-LPS can alter cell function by regulating markers of osteoclastic activity (e.g., RANKL/OPG), thereby potentially affecting the inflammation-associated resorption of mineralized tissues.