Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39204582

RESUMEN

This paper investigates the effects of ultrasonication on cellulose microparticles in different conditions. FTIR (Fourier transformed infrared spectrometry) and XRD (X-ray diffraction) analyses were used to compare the changes in the cellulose microstructure caused by the following various ultrasonic treatment conditions: time, amplitude of generated ultrasound waves, output power converted into ultrasound, the liquid medium (water and isopropyl alcohol) used for ultrasonication, and the shape of the vessel used for sonication. The cumulative results lead to an increase in the crystalline region directly proportional to the condition of sonication. Also, the total crystallinity index varied from 1.39 (pristine cellulose) to 1.94 for sonication in alcohol to 0.56 for sonication in water. The crystallinity index varied from 67% (cellulose) to 77% for the sample with 15 min of sonication in isopropyl alcohol and 50.4% for the sample with 15 min of sonication in water.

2.
Gels ; 10(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920915

RESUMEN

The evolution from conventional to modern agricultural practices, characterized by Agriculture 4.0 principles such as the application of innovative materials, smart water, and nutrition management, addresses the present-day challenges of food supply. In this context, polymer hydrogels have become a promising material for enhancing agricultural productivity due to their ability to retain and then release water, which can help alleviate the need for frequent irrigation in dryland environments. Furthermore, the controlled release of fertilizers by the hydrogels decreases chemical overdosing risks and the environmental impact associated with the use of agrochemicals. The potential of polymer hydrogels in sustainable agriculture and farming and their impact on soil quality is revealed by their ability to deliver nutritional and protective active ingredients. Thus, the impact of hydrogels on plant growth, development, and yield was discussed. The question of which hydrogels are more suitable for agriculture-natural or synthetic-is debatable, as both have their merits and drawbacks. An analysis of polymer hydrogel life cycles in terms of their initial material has shown the advantage of bio-based hydrogels, such as cellulose, lignin, starch, alginate, chitosan, and their derivatives and hybrids, aligning with sustainable practices and reducing dependence on non-renewable resources.

3.
Polymers (Basel) ; 15(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38139982

RESUMEN

In this paper, the synthesis and characterization of two polycaprolactone-polydimethylsiloxane (PDMS-CL) copolymers with biodegradable properties are reported. A comparative study was carried out using an aminopropyl-terminated polydimethylsiloxane macro-initiator (APDMS) with two different molecular weights. The copolymers (PDMS-CL-1 and PDMS-CL-2) were obtained by ring-opening polymerization of ɛ-caprolactone using APDMS as initiators and stannous 2-ethylhexanoate as a catalyst. The copolymer's structures were confirmed by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H-NMR) spectra, and energy dispersion spectroscopy (EDX). Surface morphology was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The hydrophobic properties of the copolymers were demonstrated by the water contact angle and water vapor sorption capacity. Additionally, biological tests were conducted on San Marzano type tomato plants (Lypercosium esculentum) to assess the synthesized copolymers' susceptibility to the environment in terms of biological stability and metabolic activity. The biodegradation of PDMS-CL-1 and PDMS-CL-2 copolymers does not have a dangerous effect on the metabolic activity of plants, which makes it a convenient product in interaction with the environment.

4.
Polymers (Basel) ; 15(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37765646

RESUMEN

Given the predominantly negative impact of heavy metals on living organisms, the present study proposed to evaluate the adsorption performances under static conditions of Cd (II) from aqueous solutions on unmodified Sarkanda grass lignin compared to the adsorption performances of polysaccharide polymers chemically functionalized, obtained by synthesis and in their native state, but which, although effective, have a cost price that does not allow for large-scale expansion. To improve the retention of Cd (II) on this aromatic component of the biomass resulting from the processing of lignocellulosic materials, different experimental conditions (pH, concentration, dose and contact time) were followed. The Freundlich and Langmuir isotherms were used to describe the equilibrium conditions. Adsorption kinetics were assessed using the Lagergren I and Ho and McKay II kinetic models, furnishing informative insights into the process mechanism. Lignin adsorption capacity was also analyzed by performing biological tests on tomato seeds (Lypercosium esculentum), since heavy metals are known to be a stress factor for seeds by disturbing the osmotic equilibrium. Through the prism of the investigated parameters and under precisely established experimental conditions, unmodified Sarkanda grass lignin-an aromatic biopolymer-can be recommended as a promising adsorbent for the retention of Cd (II) from aqueous solutions, successfully replacing polysaccharide, especially cellulose-based polymers.

5.
Materials (Basel) ; 16(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36903019

RESUMEN

In the present work, the possibility of increasing the calcium carbonate (CaCO3) content in sheets of paper to optimize their properties was investigated. A new class of polymeric additives for papermaking is proposed as well as a method for their use in paper sheet containing the CaCO3 precipitated addition. Calcium carbonate precipitated (PCC) and fibers cellulose were adjusted with a cationic polyacrylamide flocculating agent (polydiallyldimethylammonium chloride (plyDADMAC) or cationic polyacrylamide (cPAM)). PCC was obtained in the laboratory by a double-exchange reaction between calcium chloride (CaCl2) and sodium carbonate (Na2CO3) suspension. After testing, the dosage of PCC was established at 35%. To improve the systems of additives studied, the materials obtained were characterized and their optical and mechanical properties were analysed. The PCC had a positive influence over all of the paper samples, but in the case of use of cPAM and polyDADMAC polymers the paper obtained had superior properties compared to the paper obtained without additives. Also, the samples obtained in the presence of cationic polyacrylamide exhibit superior properties to those obtained in the presence of polyDADMAC.

6.
Materials (Basel) ; 15(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35888335

RESUMEN

Polymers are of great interest in areas such as agriculture, medicine and pharmacy, the food and cosmetic industries, and the chemical and construction industries. However, many polymers are nonbiodegradable and are not environmentally friendly. They are highly resistant to degradation and therefore can lead to waste disposal problems. In recent years, the interest in the microbial degradation of polymeric materials has grown due to the desire for less waste pollution in the environment. In this study, the biodegradable polymer that was obtained by the ring-opening polymerization of ε-caprolactone (CL) using an aminopropyl-polydimethylsiloxane (APDMS) oligomer and the effects of the polymer towards the growth and development of tomato plants (Lypercosium esculentum) were investigated. The obtained product was characterized using FTIR spectroscopy, NMR spectroscopy, and energy dispersion spectroscopy (EDX) analysis, and the effects of this compound on the evolution of tomato plants (Lypercosium esculentum) were studied. We also studied the biological stability of the product by identifying some of the microorganisms that developed on the surface, given its susceptibility to biodegradation.

7.
Polymers (Basel) ; 14(4)2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35215730

RESUMEN

The present study focuses on the synthesis of a new guanidine-functionalized disiloxane used as a ligand to obtain copper(II) complexes linked through hydrogen bonding into supramolecular structures. A two-step procedure was used to prepare the guanidine functionalized disiloxane ligand. Firstly, the hydrosilylation reaction between the siloxane precursor, namely 1,1,3,3-tetramethyldisiloxane (DS), and the allyl glycidyl ether (AGE) was performed in the presence of a platinum catalyst resulting in glycidoxypropyldisiloxane (DS-PMO) intermediary compound. In the second step, DS-PMO derivative was modified with 1,1,3,3-tetramethyl guanidine (TMGu) to obtain the guanidine-functionalized disiloxane ligand (bGu-DS) that was further used for the coordination of copper(II) acetate hydrate. The structures of the ligand and of its Cu(II) complex were confirmed by spectral methods (IR, UV-Vis, NMR, XRF) and correlated with theoretical calculations using semi-empirical PM6 and DFT methods. The copper(II) complex was found to exhibit low optical band gap energy (2.9 eV) and good photocatalytic activity under visible light irradiation in the decomposition of Congo Red (CR). A dye removal efficiency higher than 97% at the catalyst and CR concentrations of 1 and, respectively, 200 mg/L was obtained.

8.
Materials (Basel) ; 14(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208787

RESUMEN

In the present work, precipitated calcium carbonate (PCC) and carboxymethyl chitosan (CMC) were prepared to obtain new hybrid materials used in papermaking. In the first step, occurred the precipitation of CaCO3 in solution containing CMC at different levels (0.5%, 1%, and 1.5%). In the second step, PCC-CMC hybrid material (25%) was added to pulp suspension, and the sheets were made. The effect of PCC-CMC on paper properties (mechanical and optical) was systematically investigated. Breaking length, the brightness and opacity of the sheets obtained with the PCC-CMC material were better than the sheets fabricated with the unmodified PCC at similar levels of content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA