Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Blood ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958467

RESUMEN

Myelodysplastic syndromes/neoplasms (MDS) are clonal hematologic disorders characterized by morphologic abnormalities of myeloid cells and peripheral cytopenias. While genetic abnormalities underlie the pathogenesis of these disorders and their heterogeneity, current classifications of MDS rely predominantly on morphology. We performed genomic profiling of 3,233 patients with MDS or related disorders to delineate molecular subtypes and define their clinical implications. Gene mutations, copy-number alterations (CNAs), and copy-neutral loss of heterozygosity (cnLOH) were derived from targeted sequencing of a 152-gene panel, with abnormalities identified in 91, 43, and 11% of patients, respectively. We characterized 16 molecular groups, encompassing 86% of patients, using information from 21 genes, 6 cytogenetic events, and LOH at the TP53 and TET2 loci. Two residual groups defined by negative findings (molecularly not-otherwise specified, absence of recurrent drivers) comprised 14% of patients. The groups varied in size from 0.5% to 14% of patients and were associated with distinct clinical phenotypes and outcomes. The median bone marrow blast percentage across groups ranged from 1.5 to 10%, and the median overall survival from 0.9 to 8.2 years. We validated 5 well-characterized entities, added further evidence to support 3 previously reported subsets, and described 8 novel groups. The prognostic influence of bone marrow blasts depended on the genetic subtypes. Within genetic subgroups, therapy-related MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) had comparable clinical and outcome profiles to primary MDS. In conclusion, genetically-derived subgroups of MDS are clinically relevant and may inform future classification schemas and translational therapeutic research.

2.
Adv Biol Regul ; 92: 101032, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38693042

RESUMEN

Hepatocellular carcinoma (HCC) is a common cancer which unfortunately has poor outcomes. Common anti-cancer treatments such as chemotherapy and targeted therapy have not increased patient survival significantly. A common treatment for HCC patients is transplantation, however, it has limitations and complications. Novel approaches are necessary to more effectively treat HCC patients. Berberine (BBR) is a nutraceutical derived from various fruits and trees, which has been used for centuries in traditional medicine to treat various diseases such as diabetes and inflammation. More recently, the anti-proliferation effects of BBR have been investigated in the treatment of patients with various cancers, especially colorectal cancer, and in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we will focus on studies with BBR in liver diseases.


Asunto(s)
Berberina , Carcinoma Hepatocelular , Suplementos Dietéticos , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Berberina/uso terapéutico , Berberina/farmacología , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Animales
3.
Blood ; 144(11): 1221-1229, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-38687605

RESUMEN

ABSTRACT: Mutations in UBA1, which are disease-defining for VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, have been reported in patients diagnosed with myelodysplastic syndromes (MDS). Here, we define the prevalence and clinical associations of UBA1 mutations in a representative cohort of patients with MDS. Digital droplet polymerase chain reaction profiling of a selected cohort of 375 male patients lacking MDS disease-defining mutations or established World Health Organization (WHO) disease classification identified 28 patients (7%) with UBA1 p.M41T/V/L mutations. Using targeted sequencing of UBA1 in a representative MDS cohort (n = 2027), we identified an additional 27 variants in 26 patients (1%), which we classified as likely/pathogenic (n = 12) and of unknown significance (n = 15). Among the total 40 patients with likely/pathogenic variants (2%), all were male and 63% were classified by WHO 2016 criteria as MDS with multilineage dysplasia or MDS with single-lineage dysplasia. Patients had a median of 1 additional myeloid gene mutation, often in TET2 (n = 12), DNMT3A (n = 10), ASXL1 (n = 3), or SF3B1 (n = 3). Retrospective clinical review, where possible, showed that 82% (28/34) UBA1-mutant cases had VEXAS syndrome-associated diagnoses or inflammatory clinical presentation. The prevalence of UBA1 mutations in patients with MDS argues for systematic screening for UBA1 in the management of MDS.


Asunto(s)
Mutación , Síndromes Mielodisplásicos , Enzimas Activadoras de Ubiquitina , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/diagnóstico , Masculino , Enzimas Activadoras de Ubiquitina/genética , Persona de Mediana Edad , Anciano , Adulto , Anciano de 80 o más Años , Femenino , Adulto Joven
5.
Cells ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667329

RESUMEN

In the last three decades, the presence of phospholipids in the nucleus has been shown and thoroughly investigated. A considerable amount of interest has been raised about nuclear inositol lipids, mainly because of their role in signaling acting. Here, we review the main issues of nuclear phospholipid localization and the role of nuclear inositol lipids and their related enzymes in cellular signaling, both in physiological and pathological conditions.


Asunto(s)
Núcleo Celular , Fosfolípidos , Transducción de Señal , Humanos , Núcleo Celular/metabolismo , Fosfolípidos/metabolismo , Animales
6.
Methods Mol Biol ; 2777: 163-176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478343

RESUMEN

The hierarchical organization of the leukemic stem cells (LSCs) is identical to that of healthy counterpart cells. It may be split into roughly three stages: a small number of pluripotent stem cells at the top, few lineage-restricted cells in the middle, and several terminally differentiated blood cells at the bottom. Although LSCs can differentiate into the hematopoietic lineage, they can also accumulate as immature progenitor cells, also known as blast cells. Since blast cells are uncommon in healthy bloodstreams, their presence might be a sign of cancer. For instance, a 20% blast cutoff in peripheral blood or bone marrow is formally used to distinguish acute myeloid leukemia from myelodysplastic neoplasms, which is essential to plan the patients' management. Many techniques may be useful for blast enumeration: one of them is flow cytometry, which can perform analyses on many cells by detecting the expression of cell surface markers. Leukemic and non-leukemic blast cells might indeed be characterized by the same surface markers, but these markers are usually differently expressed. Here we propose to use CD45, in combination with CD34 and other cell surface markers, to identify and immunophenotype blast cells in patient-derived samples.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Médula Ósea/metabolismo , Antígenos CD34/metabolismo , Citometría de Flujo/métodos , Células Madre Neoplásicas/metabolismo , Inmunofenotipificación
7.
Br J Haematol ; 204(5): 1838-1843, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471524

RESUMEN

Real-world data have revealed that a substantial portion of patients with myelodysplastic syndromes (MDS) does not respond to epigenetic therapy with hypomethylating agents (HMAs). The cellular and molecular reasons for this resistance to the demethylating agent and biomarkers that would be able to predict the treatment refractoriness are largely unknown. In this study, we shed light on this enigma by characterizing the epigenomic profiles of patients with MDS treated with azacitidine. Our approach provides a comprehensive view of the evolving DNA methylation architecture of the disease and holds great potential for advancing our understanding of MDS treatment responses to HMAs.


Asunto(s)
Azacitidina , Metilación de ADN , Síndromes Mielodisplásicos , Humanos , Azacitidina/uso terapéutico , Azacitidina/farmacología , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Estudios Retrospectivos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Antimetabolitos Antineoplásicos/uso terapéutico , Antimetabolitos Antineoplásicos/farmacología , Anciano de 80 o más Años , Epigénesis Genética/efectos de los fármacos , Resultado del Tratamiento
8.
Adv Biol Regul ; 91: 101014, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242820

RESUMEN

Myelodysplastic Syndromes, a heterogeneous group of hematological disorders, are characterized by abnormalities in phosphoinositide-dependent signaling, epigenetic regulators, apoptosis, and cytokine interactions within the bone marrow microenvironment, contributing to disease pathogenesis and neoplastic growth. Comprehensive knowledge of these pathways is crucial for the development of innovative therapies that aim to restore normal apoptosis and improve patient outcomes.


Asunto(s)
Células Madre Hematopoyéticas , Síndromes Mielodisplásicos , Humanos , Células Madre Hematopoyéticas/metabolismo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Médula Ósea/patología , Citocinas/metabolismo , Transducción de Señal
9.
Biomolecules ; 13(7)2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37509085

RESUMEN

Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.


Asunto(s)
Núcleo Celular , Fosfatidilinositoles , Fosfatidilinositoles/metabolismo , Núcleo Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Nucléolo Celular/metabolismo , Membrana Nuclear/metabolismo
10.
Clin Epigenetics ; 15(1): 27, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36803590

RESUMEN

BACKGROUND: miRNAs are small non-coding RNAs that regulate gene expression and are linked to cancer development and progression. miRNA profiles are currently studied as new prognostic factors or therapeutic perspectives. Among hematological cancers, myelodysplastic syndromes at higher risk of evolution into acute myeloid leukemia are treated with hypomethylating agents, like azacitidine, alone or in combination with other drugs, such as lenalidomide. Recent data showed that, during azacitidine and lenalidomide therapy, the concurrent acquisition of specific point mutations affecting inositide signalling pathways is associated with lack or loss of response to therapy. As these molecules are implicated in epigenetic processes, possibly involving miRNA regulation, and in leukemic progression, through the regulation of proliferation, differentiation and apoptosis, here we performed a new miRNA expression analysis of 26 high-risk patients with myelodysplastic syndromes treated with azacitidine and lenalidomide at baseline and during therapy. miRNA array data were processed, and bioinformatic results were correlated with clinical outcome to investigate the translational relevance of selected miRNAs, while the relationship between selected miRNAs and specific molecules was experimentally tested and proven. RESULTS: Patients' overall response rate was 76.9% (20/26 cases): complete remission (5/26, 19.2%), partial remission (1/26, 3.8%), marrow complete remission (2/26, 7.7%), hematologic improvement (6/26, 23.1%), hematologic improvement with marrow complete remission (6/26, 23.1%), whereas 6/26 patients (23.1%) had a stable disease. miRNA paired analysis showed a statistically significant up-regulation of miR-192-5p after 4 cycles of therapy (vs baseline), that was confirmed by real-time PCR analyses, along with an involvement of BCL2, that was proven to be a miR-192-5p target in hematopoietic cells by luciferase assays. Furthermore, Kaplan-Meier analyses showed a significant correlation between high levels of miR-192-5p after 4 cycles of therapy and overall survival or leukemia-free survival, that was stronger in responders, as compared with patients early losing response and non-responders. CONCLUSIONS: This study shows that high levels of miR-192-5p are associated with higher overall survival and leukemia-free survival in myelodysplastic syndromes responding to azacitidine and lenalidomide. Moreover, miR-192-5p specifically targets and inhibits BCL2, possibly regulating proliferation and apoptosis and leading to the identification of new therapeutic targets.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Síndromes Mielodisplásicos , Humanos , Azacitidina/farmacología , Azacitidina/uso terapéutico , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , MicroARNs/genética , Metilación de ADN , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas c-bcl-2
11.
Adv Biol Regul ; 87: 100955, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706610

RESUMEN

Aberrant signaling pathways regulating proliferation and differentiation of hematopoietic stem cells (HSCs) can contribute to disease pathogenesis and neoplastic growth. Phosphoinositides (PIs) are inositol phospholipids that are implicated in the regulation of critical signaling pathways: aberrant regulation of Phospholipase C (PLC) beta1, PLCgamma1 and the PI3K/Akt/mTOR pathway play essential roles in the pathogenesis of Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML).


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Leucemia Mieloide Aguda/metabolismo , Fosfatidilinositoles/metabolismo , Síndromes Mielodisplásicos/metabolismo
12.
Adv Biol Regul ; 87: 100917, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243652

RESUMEN

Approaches to improve pancreatic cancer therapy are essential as this disease has a very bleak outcome. Approximately 80% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is a cancer which is difficult to effectively treat as it is often detected late in the disease process. Almost all PDACs (over 90%) have activating mutations in the GTPase gene KRAS. These mutations result in constitutive KRas activation and the mobilization of downstream pathways such as the Raf/MEK/ERK pathway. Small molecule inhibitors of key components of the KRas/Raf/MEK/ERK pathways as well as monoclonal antibodies (MoAbs) specific for upstream growth factor receptors such insulin like growth factor-1 receptor (IGF1-R) and epidermal growth factor receptors (EGFRs) have been developed and have been evaluated in clinical trials. An additional key regulatory gene frequently mutated (∼75%) in PDAC is the TP53 tumor suppressor gene which controls the transcription of multiple genes involved in cell cycle progression, apoptosis, metabolism, cancer progression and other growth regulatory processes. Small molecule mutant TP53 reactivators have been developed which alter the structure of mutant TP53 protein and restore some of its antiproliferative activities. Some mutant TP53 reactivators have been examined in clinical trials with patients with mutant TP53 genes. Inhibitors to the TP53 negative regulator Mouse Double Minute 2 (MDM2) have been developed and analyzed in clinical trials. Chloroquine and hydroxychloroquine are established anti-malarial and anti-inflammatory drugs that also prevent the induction of autophagy which can have effects on cancer survival. Chloroquine and hydroxychloroquine have also been examined in various clinical trials. Recent studies are suggesting effective treatment of PDAC patients may require chemotherapy as well as targeting multiple pathways and biochemical processes.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Hidroxicloroquina/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Cloroquina/uso terapéutico , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Mutación , Línea Celular Tumoral , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Neoplasias Pancreáticas
13.
Mini Rev Med Chem ; 23(3): 307-319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35733303

RESUMEN

BACKGROUND: The gastrointestinal tract and the central nervous system are distinct because of evident morpho-functional features. Nonetheless, evidence indicates that these systems are bidirectionally connected through the gut-brain axis, defined as the signaling that takes place between the gastrointestinal tract and central nervous system, which plays in concert with the gut microbiota, i.e., the myriad of microorganisms residing in the lumen of the human intestine. In particular, it has been described that gut microbiota abnormalities, referred to as dysbiosis, may affect both central nervous system development and physiology. OBJECTIVE: Starting from the possible mechanisms through which gut microbiota variations were found to impact several central nervous system disorders, including Autism Spectrum Disorder and Alzheimer's Disease, we will focus on intriguing, although poorly investigated, aspects such as the epithelial and vascular barrier integrity. Indeed, several studies suggest a pivotal role of gut microbiota in maintaining the efficiency of both the intestinal barrier and blood-brain barrier. In particular, we report evidence indicating an impact of gut microbiota on intestinal barrier and blood-brain barrier homeostasis and discuss the differences and the similarities between the two barriers. Moreover, to stimulate further research, we review various tests and biochemical markers that can be used to assess intestinal and blood-brain barrier permeability. CONCLUSION: We suggest that the evaluation of intestinal and blood-brain barrier permeability in neurological patients may not only help to better understand central nervous system disorders but also pave the way for finding new molecular targets to treat patients with neurological impairment.


Asunto(s)
Trastorno del Espectro Autista , Fenómenos Bioquímicos , Enfermedades del Sistema Nervioso Central , Humanos , Eje Cerebro-Intestino , Encéfalo
14.
Cells ; 11(14)2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35883598

RESUMEN

Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is the fourth leading cause of cancer death world-wide. Therapies for PDAC are largely ineffective due to the dense desmoplastic tumor microenvironment which prevents chemotherapeutic drugs and small molecule inhibitors from exerting effective anti-cancer effects. In this review, we will discuss the roles of TP53 and miRs on the PDAC tumor microenvironment and how loss of the normal functions of TP53 promote tumor progression. The TP53 gene is mutated in approximately 50% of pancreatic cancers. Often, these TP53 mutations are point mutations which confer additional functions for the TP53 proteins. These are called gain of function (GOF) mutations (mut). Another class of TP53 mutations are deletions which result in loss of the TP53 protein; these are referred to TP53-null mutations. We have organized this review into various components/properties of the PDAC microenvironment and how they may be altered in the presence of mutant TP53 and loss of certain miR expression.


Asunto(s)
Carcinoma Ductal Pancreático , MicroARNs , Microambiente Tumoral , Proteína p53 Supresora de Tumor , Carcinoma Ductal Pancreático/metabolismo , Humanos , Inmunidad , MicroARNs/genética , MicroARNs/metabolismo , Mutación/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas
15.
N Engl J Med ; 386(21): 1998-2010, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35613022

RESUMEN

BACKGROUND: Although hypomethylating agents are currently used to treat patients with cancer, whether they can also reactivate and up-regulate oncogenes is not well elucidated. METHODS: We examined the effect of hypomethylating agents on SALL4, a known oncogene that plays an important role in myelodysplastic syndrome and other cancers. Paired bone marrow samples that were obtained from two cohorts of patients with myelodysplastic syndrome before and after treatment with a hypomethylating agent were used to explore the relationships among changes in SALL4 expression, treatment response, and clinical outcome. Leukemic cell lines with low or undetectable SALL4 expression were used to study the relationship between SALL4 methylation and expression. A locus-specific demethylation technology, CRISPR-DNMT1-interacting RNA (CRISPR-DiR), was used to identify the CpG island that is critical for SALL4 expression. RESULTS: SALL4 up-regulation after treatment with hypomethylating agents was observed in 10 of 25 patients (40%) in cohort 1 and in 13 of 43 patients (30%) in cohort 2 and was associated with a worse outcome. Using CRISPR-DiR, we discovered that demethylation of a CpG island within the 5' untranslated region was critical for SALL4 expression. In cell lines and patients, we confirmed that treatment with a hypomethylating agent led to demethylation of the same CpG region and up-regulation of SALL4 expression. CONCLUSIONS: By combining analysis of patient samples with CRISPR-DiR technology, we found that demethylation and up-regulation of an oncogene after treatment with a hypomethylating agent can indeed occur and should be further studied. (Funded by Associazione Italiana per la Ricerca sul Cancro and others.).


Asunto(s)
Antineoplásicos , Desmetilación , Síndromes Mielodisplásicos , Oncogenes , Regulación hacia Arriba , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desmetilación/efectos de los fármacos , Humanos , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oncogenes/efectos de los fármacos , Oncogenes/fisiología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos
16.
Cells ; 11(5)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269416

RESUMEN

The TP53 tumor suppressor is mutated in ~75% of pancreatic cancers. The mutant TP53 protein in pancreatic ductal adenocarcinomas (PDAC) promotes tumor growth and metastasis. Attempts have been made to develop molecules that restore at least some of the properties of wild-type (WT) TP53. APR-246 is one such molecule, and it is referred to as a mutant TP53 reactivator. To understand the potential of APR-246 to sensitize PDAC cells to chemotherapy, we introduced a vector encoding WT-TP53 into two PDAC cell lines, one lacking the expression of TP53 (PANC-28) and one with a gain-of-function (GOF) mutant TP53 (MIA-PaCa-2). APR-246 increased drug sensitivity in the cells containing either a WT or mutant TP53 protein with GOF activity, but not in cells that lacked TP53. The introduction of WT-T53 into PANC-28 cells increased their sensitivity to the TP53 reactivator, chemotherapeutic drugs, and signal transduction inhibitors. The addition of WT-TP53 to PDAC cells with GOF TP53 also increased their sensitivity to the drugs and therapeutics, indicating that APR-246 could function in cells with WT-TP53 and GOF TP53. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function through the reactivation of TP53.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Quinuclidinas/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas
17.
Adv Biol Regul ; 83: 100840, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34866036

RESUMEN

Approaches to improve pancreatic cancer therapy are essential as this disease has a very bleak outcome. Approximately 80% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). A key regulatory gene frequently mutated (∼75%) in PDAC is the TP53 tumor suppressor gene which controls the transcription of multiple genes involved in cell cycle progression, apoptosis, cancer progression and other growth regulatory processes. The mouse double minute 2 homolog (MDM2) gene product is a nuclear-localized E3 ubiquitin ligase and negatively regulates the TP53 protein which results in its proteasomal degradation. Various MDM2 inhibitors have been isolated and examined in clinical trials, especially in patients with hematological malignancies. Nutlin-3a is one of the first MDM2 inhibitors isolated. Berberine (BBR) is a natural product found in many fruits and berries and used in traditional medicine for centuries. It has many biological effects, and some are anti-proliferative in nature. BBR may activate the expression of TP53 and inhibit cell cycle progression as well as other events important in cell growth. To understand more about the potential of compounds like BBR and chemical modified BBRs (NAX compounds) to sensitize PDAC cells to MDM2 inhibitors, we introduced either WT-TP53 or the pLXSN empty vector control into two PDAC cell lines, one lacking expression of TP53 (PANC-28) and one with gain-of-function mutant TP53 on both alleles (MIA-PaCa-2). Our results indicate that nutlin-3a was able to increase the sensitivity to BBR and certain NAX compounds. The effects of nutlin-3a were usually more substantial in those cells containing an introduced WT TP53 gene. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function by stabilization of the TP53 protein.


Asunto(s)
Berberina , Neoplasias Pancreáticas , Apoptosis , Berberina/farmacología , Berberina/uso terapéutico , Línea Celular Tumoral , Humanos , Imidazoles , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Piperazinas , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Adv Biol Regul ; 83: 100838, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34819252

RESUMEN

Phosphoinositide-specific phospholipases C (PLCs) are a class of enzymes involved in several cell activities, such as cell cycle regulation, proliferation, differentiation and cytoskeletal dynamics. Among these enzymes, PLCγ1 is one of the most expressed PLCs in the brain, contributing to a complex network in the developing nervous system. Several studies have shown that PLCγ1 signaling imbalance is linked to several brain disorders, including glioblastoma, the most aggressive brain tumor in adults. Indeed, it has been demonstrated a link between PLCγ1 inhibition and the arrest of glioma cell motility of fetal rat brain aggregates and the impairment of cell invasion abilities following its down-regulation. This study aims to determine the pathological influence of PLCγ1 in glioblastoma, through a translational study which combines in silico data, data from glioblastoma patients' samples and data on engineered cell lines. We found out that PLCγ1 gene expression correlates with the pathological grade of gliomas, and it is higher in fifty patients' glioblastoma tissue samples compared to twenty healthy controls. Moreover, it was demonstrated that PLCγ1 silencing in U87-MG leads to a reduction in cell migration and invasion abilities. The opposite trend was observed following PLCγ1 overexpression, suggesting an interesting possible involvement of PLCγ1 in gliomas' aggressiveness.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Invasividad Neoplásica/genética , Ratas , Transducción de Señal
19.
NEJM Evid ; 1(7): EVIDoa2200008, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-38319256

RESUMEN

BACKGROUND: Risk stratification and therapeutic decision-making for myelodysplastic syndromes (MDS) are based on the International Prognostic Scoring System­Revised (IPSS-R), which considers hematologic parameters and cytogenetic abnormalities. Somatic gene mutations are not yet used in the risk stratification of patients with MDS. METHODS: To develop a clinical-molecular prognostic model (IPSS-Molecular [IPSS-M]), pretreatment diagnostic or peridiagnostic samples from 2957 patients with MDS were profiled for mutations in 152 genes. Clinical and molecular variables were evaluated for associations with leukemia-free survival, leukemic transformation, and overall survival. Feature selection was applied to determine the set of independent IPSS-M prognostic variables. The relative weights of the selected variables were estimated using a robust Cox multivariable model adjusted for confounders. The IPSS-M was validated in an external cohort of 754 Japanese patients with MDS. RESULTS: We mapped at least one oncogenic genomic alteration in 94% of patients with MDS. Multivariable analysis identified TP53multihit, FLT3 mutations, and MLLPTD as top genetic predictors of adverse outcomes. Conversely, SF3B1 mutations were associated with favorable outcomes, but this was modulated by patterns of comutation. Using hematologic parameters, cytogenetic abnormalities, and somatic mutations of 31 genes, the IPSS-M resulted in a unique risk score for individual patients. We further derived six IPSS-M risk categories with prognostic differences. Compared with the IPSS-R, the IPSS-M improved prognostic discrimination across all clinical end points and restratified 46% of patients. The IPSS-M was applicable in primary and secondary/therapy-related MDS. To simplify clinical use of the IPSS-M, we developed an open-access Web calculator that accounts for missing values. CONCLUSIONS: Combining genomic profiling with hematologic and cytogenetic parameters, the IPSS-M improves the risk stratification of patients with MDS and represents a valuable tool for clinical decision-making. (Funded by Celgene Corporation through the MDS Foundation, the Josie Robertson Investigators Program, the Edward P. Evans Foundation, the Projects of National Relevance of the Italian Ministry of University and Research, Associazione Italiana per la Ricerca sul Cancro, the Japan Agency for Medical Research and Development, Cancer Research UK, the Austrian Science Fund, the MEXT [Japanese Ministry of Education, Culture, Sports, Science and Technology] Program for Promoting Research on the Supercomputer Fugaku, the Japan Society for the Promotion of Science, the Taiwan Department of Health, and Celgene Corporation through the MDS Foundation.)


Asunto(s)
Mutación , Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/diagnóstico , Pronóstico , Masculino , Femenino , Anciano , Persona de Mediana Edad , Medición de Riesgo/métodos , Anciano de 80 o más Años , Adulto , Japón
20.
Front Oncol ; 11: 678824, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34109125

RESUMEN

Polyphosphoinositides (PPIns) and their modulating enzymes are involved in regulating many important cellular functions including proliferation, differentiation or gene expression, and their deregulation is involved in human diseases such as metabolic syndromes, neurodegenerative disorders and cancer, including Acute Myeloid Leukemia (AML). Given that PPIns regulating enzymes are highly druggable targets, several studies have recently highlighted the potential of targeting them in AML. For instance many inhibitors targeting the PI3K pathway are in various stages of clinical development and more recently other novel enzymes such as PIP4K2A have been implicated as AML targets. PPIns have distinct subcellular organelle profiles, in part driven by the specific localisation of enzymes that metabolise them. In particular, in the nucleus, PPIns are regulated in response to various extracellular and intracellular pathways and interact with specific nuclear proteins to control epigenetic cell state. While AML does not normally manifest with as many mutations as other cancers, it does appear in large part to be a disease of dysregulation of epigenetic signalling and many novel therapeutics are aimed at reprogramming AML cells toward a differentiated cell state or to one that is responsive to alternative successful but limited AML therapies such as ATRA. Here, we propose that by combining bioinformatic analysis with inhibition of PPIns pathways, especially within the nucleus, we might discover new combination therapies aimed at reprogramming transcriptional output to attenuate uncontrolled AML cell growth. Furthermore, we outline how different part of a PPIns signalling unit might be targeted to control selective outputs that might engender more specific and therefore less toxic inhibitory outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA